• 제목/요약/키워드: RNA시퀀싱

검색결과 37건 처리시간 0.026초

RNA 시퀀싱 데이터를 이용한 병렬 SNP 추출 알고리즘 (A parallel SNP detection algorithm for RNA-Seq data)

  • 김덕근;이덕해;공진화;이은주;윤지희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1260-1263
    • /
    • 2011
  • 최근 차세대 시퀀싱 (Next Generation Sequencing, NGS) 기술이 발전하면서 DNA, RNA 등의 시퀀싱 데이터를 이용한 유전체 분석 방식에 관한 연구가 활발히 이루어지고 있다. 차세대 시퀀싱 데이터를 이용한 유전체 분석 방식은 마이크로어레이 혹은 EST/cDNA 데이터를 이용한 기존의 분석 방식에 비하여 비용이 적게 들고 정확한 결과를 얻을 수 있다는 장점이 있다. 그러나 이 들 DNA, RNA 시퀀싱 데이터는 각 시퀀스의 길이가 짧고 전체 용량은 매우 커서 이 들 데이터로부터 정확한 분석 결과를 추출하는 데에 많은 어려움이 있다. 본 연구에서는 클라우드 컴퓨팅 기술을 기반으로 하여 대용량의 RNA 시퀀싱 데이터를 고속으로 처리하는 병렬 SNP 추출 알고리즘을 제안한다. 전체 게놈 데이터 중 유전자 영역만을 high coverage로 시퀀싱하여 얻어지는 RNA 시퀀싱 데이터는 유전자 변이 추출을 목적으로 분석되며, SNP(Single Nucleotide Polymorphism)와 같은 유전자 변이는 질병의 원인 규명 및 치료법 개발에 직접 이용된다. 제안된 알고리즘은 동시에 실행되는 다수의 Map/Reduce 함수에 의해서 대규모 RNA 시퀀스를 병렬로 처리하며, 레퍼런스 시퀀스에 매핑된 각 염기의 출현 빈도와 품질점수를 이용하여 SNP를 추출한다. 또한 이 들 SNP 추출 결과에 대한 시각적 분석 도구를 제공하여 SNP 추출 과정 및 근거를 시각적으로 확인/검증할 수 있도록 지원한다.

단일 세포 RNA 시퀀싱 데이터에 대한 컴퓨터 분석의 작업과정 (The Workflow for Computational Analysis of Single-cell RNA-sequencing Data)

  • 우성훈;정병출
    • 대한임상검사과학회지
    • /
    • 제56권1호
    • /
    • pp.10-20
    • /
    • 2024
  • RNA-시퀀싱은 표본에 대한 전사체 전체의 패턴을 제공하는 기법이다. 그러나 RNA-시퀀싱은 표본 내 전체 세포에 대한 평균 유전자 발현만 제공할 수 있으며, 표본 내의 이질성(heterogeneity)에 대한 정보는 제공하지 못한다. 단일 세포 RNA-시퀀싱 기술의 발전을 통해 우리는 표본의 단일 세포 수준에서 이질성과 유전자 발현의 동역학(dynamics)에 대한 이해를 할 수 있게 되었다. 예를 들어, 우리는 단일 세포 RNA-시퀀싱을 통해 복잡한 조직을 구성하는 다양한 세포 유형을 식별할 수 있으며, 특정 세포 유형의 유전자 발현 변화와 같은 정보를 알 수 있다. 단일 세포 RNA-시퀀싱은 처음 도입된 이후 많은 이들의 관심을 끌게 되었으며, 이를 활용하기 위한 대규모 생물정보학(bioinformatics) 도구가 개발되었다. 그러나 단일 세포 RNA-시퀀싱에서 생성된 빅데이터 분석에는 데이터 전처리에 대한 이해와 전처리 이후 다양한 분석 기술에 대한 이해가 필요하다. 본 종설에서는 단일 세포 RNA-시퀀싱 데이터분석과 관련된 작업과정의 개요를 제시한다. 먼저 데이터의 품질 관리, 정규화 및 차원 감소와 같은 데이터의 전 처리 과정에 대해 설명한다. 그 이후, 가장 일반적으로 사용되는 생물정보학 도구를 활용한 데이터의 후속 분석에 대해 설명한다. 본 종설은 이 분야에 관심이 있는 새로운 연구자를 위한 가이드라인을 제공하는 것을 목표로 한다.

RNA-Seq 정렬 알고리즘의 동향 (Recent Trends in RNA-Seq Alignment Algorithms)

  • 유승학;최민석;윤성로
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.669-671
    • /
    • 2014
  • High Throughput Sequencing (HTS) 기술의 발달로 인해 시퀀싱 비용이 감소함에 따라 다양한 분야에서 이를 활용한 융합 연구가 활발하게 진행되고 있다. HTS 기술에서 가장 중요한 부분은 수백만개의 short read 들을 표준유전체 (reference genome)에 정렬시키는 것인데 RNA 시퀀싱 (RNA-Seq) 의 경우 RNA splicing 으로 인해 일반적인 aligner 로 처리가 불가능하다. 복잡한 RNA-Seq 정렬 문제를 해결하기 위해 그동안 다양한 알고리즘들이 제안되어 왔다. 본 논문에서는 RNA-seq 정렬분야에서 잘 알려진 알고리즘들과 최신 알고리즘들을 살펴봄으로써 RNA-seq 정렬 알고리즘의 동향을 살펴보고자 한다.

단세포 RNA 시퀀싱 데이터를 위한 가중변수 스펙트럼 군집화 기법 (One-step spectral clustering of weighted variables on single-cell RNA-sequencing data)

  • 박민영;박세영
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.511-526
    • /
    • 2020
  • 단세포 RNA 시퀀싱 데이터(single-cell RNA-sequencing data, 이하 단세포 RNA 데이터)는 세포 조직으로부터 추출한 각 단세포 별 유전자의 신호를 기록한 데이터로, 세포 간의 이질성을 파악하는 것을 주요 목적으로 한다. 그러나 단세포 RNA 데이터는 샘플링 및 기술적인 한계로 인해 결측비율이 높고, 노이즈가 크다. 이러한 이유 때문에 기존의 군집화 방법을 적용하는 데에 한계가 존재한다. 본 논문에서는 단세포 RNA 데이터 분석에서 모티브를 얻어 스펙트럼 군집화(spectral clustering) 기반의 방법을 제안한다. 특히 유사도 행렬(similarity matrix) 계산에서 유전자 별로 가중치를 부여하여 기존의 단세포 데이터 분석 방법과 차별화하였다. 제안하는 군집화 방법은 유전자별 가중치를 부여함과 동시에 세포를 군집화한다. 군집화는 반복 알고리즘을 통해 제안하는 비볼록식(non-convex optimization)을 풀어 진행한다. 또한 실데이터 적용과 시뮬레이션을 통해 제안하는 군집화 방법이 기존의 방법보다 군집을 잘 구분하는 것을 보인다.

A MA-plot-based Feature Selection by MRMR in SVM-RFE in RNA-Sequencing Data

  • Kim, Chayoung
    • 한국정보기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.25-30
    • /
    • 2018
  • 유전자 규정 네트워크 (GRN)에 RNA-시퀀싱 데이터를 활용할 때, 해당 유전자와 환경과의 상호 작용에 의해서 생기는 형질들 중에서 연관성이 높은 유전자로 GRN을 구성하는 것은 상당히 어려운 일이다. 본 연구에서는 Big-Data의 RNA-시퀀싱 자료들로, 지지 벡터 머신 회귀 특징 추출(SVM-RFE) 에 근거하여, 연관성이 높은 유전자(maximum-relevancy)는 추출하고, 연관성이 낮은 유전자(minimum-redundancy)는 제거하는 MRMR 필터 방법을 집중도 의존 정규화(intensity-dependent normalization, DEGSEQ)에 기반 하여 데이터의 정밀성을 높여, 소수 연관성 높은 유전자만 판별해 내는 방법을 사용한다. 제안한 방법은 R 언어 패키지를 사용하여 편리함과 동시에, 다른 기존의 방법을 비교하였을 때, Big-Data의 시간 활용도를 높이면서, 동시에 높은 연관성 있는 유전자만을 잘 추출해 냄을 확인하였다.

SVM-기반 제약 조건과 강화학습의 Q-learning을 이용한 변별력이 확실한 특징 패턴 선택 (Variable Selection of Feature Pattern using SVM-based Criterion with Q-Learning in Reinforcement Learning)

  • 김차영
    • 인터넷정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.21-27
    • /
    • 2019
  • RNA 시퀀싱 데이터 (RNA-seq)에서 수집된 많은 양의 데이터에 변별력이 확실한 특징 패턴 선택이 유용하며, 차별성 있는 특징을 정의하는 것이 쉽지 않다. 이러한 이유는 빅데이터 자체의 특징으로써, 많은 양의 데이터에 중복이 포함되어 있기 때문이다. 해당이슈 때문에, 컴퓨터를 사용하여 처리하는 분야에서 특징 선택은 랜덤 포레스트, K-Nearest, 및 서포트-벡터-머신 (SVM)과 같은 다양한 머신러닝 기법을 도입하여 해결하려고 노력한다. 해당 분야에서도 SVM-기반 제약을 사용하는 서포트-벡터-머신-재귀-특징-제거(SVM-RFE) 알고리즘은 많은 연구자들에 의해 꾸준히 연구 되어 왔다. 본 논문의 제안 방법은 RNA 시퀀싱 데이터에서 빅-데이터처리를 위해 SVM-RFE에 강화학습의 Q-learning을 접목하여, 중요도가 추가되는 벡터를 세밀하게 추출함으로써, 변별력이 확실한 특징선택 방법을 제안한다. NCBI-GEO와 같은 빅-데이터에서 공개된 일부의 리보솜 단백질 클러스터 데이터에 본 논문에서 제안된 알고리즘을 적용하고, 해당 알고리즘에 의해 나온 결과와 이전 공개된 SVM의 Welch' T를 적용한 알고리즘의 결과를 비교 평가하였다. 해당결과의 비교가 본 논문에서 제안하는 알고리즘이 좀 더 나은 성능을 보여줌을 알 수 있다.

RNA 시퀀싱 기법으로 생성된 빅데이터 분석 (Big Data Analytics in RNA-sequencing)

  • 우성훈;정병출
    • 대한임상검사과학회지
    • /
    • 제55권4호
    • /
    • pp.235-243
    • /
    • 2023
  • 차세대 염기서열 분석이 개발되고 널리 사용됨에 따라 RNA-시퀀싱(RNA-sequencing, RNA-seq)이 글로벌 전사체 프로파일링을 검증하기 위한 도구의 첫번째 선택으로 급부상하게 되었다. RNA-seq의 상당한 발전으로 다양한 유형의 RNA-seq가 생물정보학(bioinformatics) 발전과 함께 진화했으나, 다양한 RNA-seq 기법 및 생물정보학에 대한 전반적인 이해 없이는 RNA-seq의 복잡한 데이터를 해석하여 생물학적 의미를 도출하기는 어렵다. 이와 관련하여 본 리뷰에서는 RNA-seq의 두 가지 주요 섹션을 논의하고 있다. 첫째, Standard RNA-seq과 주요하게 자주 사용되는 두 가지 RNA-seq variant method를 비교하였다. 이 비교는 어떤 RNA-seq 방법이 연구 목적에 가장 적절한지에 대한 시사점을 제공한다. 둘째, 가장 널리 사용되는 RNA-seq에서 생성된 데이터 분석; (1) 탐색적 자료 분석 및 (2) enriched pathway 분석에 대해 논의하였다. 데이터 세트의 전반적인 추세를 제공할 수 있는 주 성분 분석, Heatmap 및 Volcano plot과 같이 RNA-seq에 대해 가장 널리 사용되는 탐색적 자료 분석을 소개하였다. Enriched pathway 분석 섹션에서는 3가지 세대의 enriched pathway 분석에 대해 소개하고 각 세대가 어떤 식으로 RNA-seq 데이터 세트로부터 enriched pathway를 도출하는지를 소개하였다.

Illumina를 이용한16S rRNA 기반 미생물생태분석에서 분변의 동결건조에 의한 인공적인 시퀀스 생성 감소효과 (Freeze-drying feces reduces illumina-derived artefacts on 16S rRNA-based microbial community analysis)

  • 김정만;운노타쯔야
    • Journal of Applied Biological Chemistry
    • /
    • 제59권4호
    • /
    • pp.299-304
    • /
    • 2016
  • PCR 산물을 이용한 시퀀싱방법 중 Illumina 플랫폼으로 시퀀싱을 수행하면 100개 이상의 인위적인 시퀀스가 생겨나며, 그러한 인위적으로 형성되는 시퀀스에 의해 Operational taxonomic units를 기반으로 한 미생물생태 변화 및 네트워크 분석에 영향을 미친다. 이러한 문제점이 있음에도 불구하고 분변미생물생태를 분석하는데 Illumina에서 제공하고 있는 시퀀싱을 주된 방법으로 사용하고 있으며, 또한 그러한 시퀀스 기반의 분변미생물 생태분석 결과는 분변샘플상태(i.e., 분변 보관 기간, 분변양, 분변의 신선도)에 따라 상이하게 나타난다. 본 연구에서는 분변샘플의 동결건조가 시퀀스 데이터의 퀄리티를 향상시키는지 관해 조사하였으며, 이를 통해 분변샘플에 동결건조처리는 전체적인 미생물생태구조를 변화시키지는 않지만 인위적으로 형성되었을 가능성이 있는 시퀀스의 수를 감소시키는 것으로 확인되었다. 따라서, 분변으로부터 DNA를 추출하기 이전에 동결건조처리하는 방법을 Illumina 기반의 분변미생물생태분석에 사용하는 것을 권장한다.

RNAseq 빅데이터에서 유전자 선택을 위한 밀집도-의존 정규화 기반의 서포트-벡터 머신 병합법 (Combining Support Vector Machine Recursive Feature Elimination and Intensity-dependent Normalization for Gene Selection in RNAseq)

  • 김차영
    • 인터넷정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.47-53
    • /
    • 2017
  • 고처리 시퀀싱과 빅데이터 및 크라우드 컴퓨팅에 혁신이 일어나면서, RNA 시퀀싱도 획기적인 변화가 일어, RNAseq가 기존의 DNA 마이크로어레이를 대체하여, 빅-데이터를 형성하고 있다. 현재, RANseq 이용한 유전자 조절망(GRN) 까지 연구가 활성화 되고 있는데, 그 중 한 분야가 GRN의 기본 요소인 특징 유전자를 빅-데이터에서도 구별하고 기존에 알려진 것 외에 새로운 역할을 찾는 것이다. 그러나, 이러한 연구 방향에 부합하는 빅-데이터를 처리할 수 있는 컴퓨테이션 방법이 아직까지 매우 부족하다. 따라서 본 논문에서는 RNAseq 빅-데이터를 처리할 수 있도록 기존의 SVM-RFE알고리즘을 밀집도-의존 정규화에 병합하여, NCBI-GEO와 같은 빅-데이터에서 공개된 일부의 데이터에 개선된 알고리즘을 적용하고 해당 알고리즘에 의해 나온 결과의 성능을 평가한다.

RNA-Seq 데이터를 이용한 선택 스플라이싱 유형 분석 (Alternative Splicing Pattern Analysis from RNA-Seq data)

  • 공진화;이종근;이은주;윤지희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.37-40
    • /
    • 2011
  • 선택 스플라이싱 (alternative splicing)은 mRNA (messenger RNA)의 전구체인 pre-mRNA가 mRNA로 전사될 때 pre-mRNA의 엑손 영역들 (exons)이 여러 가지 유형 (pattern)으로 다시 연결되는 과정을 말한다. 선택 스플라이싱에 의해 하나의 유전자로부터 서로 다른 mRNA가 만들어 지고 서로 다른 이소형의 단백질 (protein isoforms)이 생성된다. 현재까지 알려진 선택 스플라이싱의 유형은 약 7가지 종류가 있으며, 유전자의 돌연변이 및 질병과 밀접한 연관성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 차세대 시퀀싱 (Next Generation Sequencing : NGS) 기술로 생성된 RNA-Seq 데이터로부터 각 유전자 영역에 대한 선택 스플라이싱 유형을 분류/추출하는 새로운 알고리즘을 제안한다. 제안된 알고리즘에서는 RNA-Seq 데이터를 DNA 시퀀스와 mRNA 트랜스크립트 시퀀스에 동시 매핑하고, 각 엑손 영역에 정렬된 RNA-Seq 데이터의 커버리지 정보 및 엑손의 접합 (junction) 정보를 이용하여 발현된 트랜스크립트 (transcript)의 종류와 양을 측정한다. 알고리즘의 유효성을 보이기 위하여 시뮬레이션 데이터를 이용한 인간 유전자 영역에서의 선택 스플라이싱 유형 추출 실험을 수행하였으며, 검증된 선택 스플라이싱 DB와 비교, 검증하였다.