A big data processing method to predict solar power generation using systems engineering approach is developed in this work. For developing analytical method, linear model (LM), support vector machine (SVN), and artificial neural network (ANN) technique are chosen. As evaluation indices, the cross-correlation and the mean square root of prediction error (RMSEP) are used. From multi-variable comparison test, it was found that ANN methodology provides the highest correlation and the lowest RMSEP.
본 연구에서는 야외에서 자료 취득이 가능하며 한 번에 다량의 사과를 촬영할 수 있는 지상용 초분광 스캐너를 활용하여 사과의 분광정보와 당도와의 부분최소제곱회귀분석(PLSR, Partial Least Square Regression)을 수행하였으며, 최적의 예측모델을 구축하기 위한 다양한 전처리기법의 적용가능성을 평가하고 VIP(Variable Importance in Projection)점수를 통한 최적밴드를 산출하였다. 이를 위하여 360-1019 nm영역에서 촬영된 515밴드의 초분광 영상에서 70개의 분광곡선을 취득하였으며, 디지털광도계를 이용하여 당도($^{\circ}Brix$)를 측정하였다. 사과의 분광특성과 당도사이의 회귀모델을 구축하였으며, 최적의 예측모델은 모델 예측치와 실측치간의 결정계수($r_p^2$, coefficient of determination of prediction)와 RMSECV(Root Mean Square Error of Cross Validation), RMSEP(Root Mean Square Error of Prediction)등을 고려하여 선정하였다. 그 결과 산란보정 기법의 대표적인 MSC(Multiplicative Scatter Correction)의 기반의 전처리기법이 가장 효과적이었으며, MSC와 SNV(Standard Normal Variate)를 조합한 경우 RMSECV와 RMSEP가 각각 0.8551과 0.8561로 가장 낮았고, $r_c^2$와 $r_p^2$은 각각 0.8533과 0.6546으로 가장 높았다, 또한 360-380, 546-690, 760, 915, 931-939, 942, 953, 971, 978, 981, 988, 992-1019 nm 등이 당도 측정을 위한 가장 영향력 있는 파장영역으로 나타났다. 해당 영역의 분광값을 가지고 PLSR을 수행한 결과, 전파장대를 사용할 때보다 RMSEP가 0.6841로 감소하고 $r_p^2$는 0.7795로 증가하는 것을 확인하였다. 본 연구를 통하여 사과의 당도측정에 있어 야외에서 취득한 초분광 영상자료의 활용 가능성을 확인하였으며, 이는 필드자료 및 센서 활용분야의 확장가능성을 보여준다.
Choi, Sung Won;Lee, Chang Sug;Park, Chang Hee;Kim, Dong Hee;Park, Sung Kwon;Kim, Beob Gyun;Moon, Sang Ho
한국초지조사료학회지
/
제34권4호
/
pp.277-282
/
2014
Nutritive value analysis of feed is very important for the growth of livestock, and ensures the efficiency of feeds as well as economic status. However, general laboratory analyses require considerable time and high cost. Near-infrared reflectance spectroscopy (NIRS) is a spectroscopic technique used to analyze the nutritive values of seeds. It is very effective and less costly than the conventional method. The sample used in this study was a corn kernel and the partial least square regression method was used for evaluating nutrient composition, digestibility, and energy value based on the calibration equation. The evaluation methods employed were the coefficient of determination ($R^2$) and the root mean squared error of prediction (RMSEP). The results showed the moisture content ($R^2_{val}=0.97$, RMSEP=0.109), crude protein content ($R^2_{val}=0.94$, RMSEP=0.212), neutral detergent fiber content ($R^2_{val}=0.96$, RMSEP=0.763), acid detergent fiber content ($R^2_{val}=0.96$, RMSEP=0.142), gross energy ($R^2_{val}=0.82$, RMSEP=23.249), in vitro dry matter digestibility ($R^2_{val}=0.68$, RMSEP=1.69), and metabolizable energy (approximately $R^2_{val}$ >0.80). This study confirmed that the nutritive components of corn kernels can be predicted using near-infrared reflectance spectroscopy.
Anna Antonella, Spina;Carlotta, Ceniti;Cristian, Piras;Bruno, Tilocca;Domenico, Britti;Valeria Maria, Morittu
Journal of Animal Science and Technology
/
제64권3호
/
pp.531-538
/
2022
In Italy, buffalo mozzarella is a largely sold and consumed dairy product. The fraudulent adulteration of buffalo milk with cheaper and more available milk of other species is very frequent. In the present study, Fourier transform infrared spectroscopy (FTIR), in combination with multivariate analysis by partial least square (PLS) regression, was applied to quantitatively detect the adulteration of buffalo milk with cow milk by using a fully automatic equipment dedicated to the routine analysis of the milk composition. To enhance the heterogeneity, cow and buffalo bulk milk was collected for a period of over three years from different dairy farms. A total of 119 samples were used for the analysis to generate 17 different concentrations of buffalo-cow milk mixtures. This procedure was used to enhance variability and to properly randomize the trials. The obtained calibration model showed an R2 ≥ 0.99 (R2 cal. = 0.99861; root mean square error of cross-validation [RMSEC] = 2.04; R2 val. = 0.99803; root mean square error of prediction [RMSEP] = 2.84; root mean square error of cross-validation [RMSECV] = 2.44) suggesting that this method could be successfully applied in the routine analysis of buffalo milk composition, providing rapid screening for possible adulteration with cow's milk at no additional cost.
사과의 영양진단에서 사과잎 분석을 신속히 하기 위한 방법을 모색하기 위해 생잎과 건조잎을 이용해 근적의 스펙트럼을 측정하고 이를 질소 함량과의 최적의 상관관계를 도출하기 위해 부분소자승(PLS)과 주성분회귀(PCR)과 같은 다변량 분석법을 이용하여 비파괴 검량식을 작성하였다. 또한 검량식 작성에서 비파괴 측정 정확도를 향상시키기 위하여 smoothing, mean normalization, multiplicative scatter correction (MSC). derivative 등의 다양한 데이터 전처리 조작을 수행하여 정확도 향상 가능성을 조사하였다. 사과 건조잎의 비파괴 측정 가능성을 조사한 결과 PLS-1 모델에서 Norris first derivate하였을 태 RMSEP가 $0.6999g\;kg^{-1}$ 로 가장 좋았으며, 생잎은 Savitzky-Golay first derivate하였을 때에 RMSEP 가 $1.202g\;kg^{-1}$으로 가장 좋았다. 건조잎의 PCR 모델은 mean normalization 처리 후 Savitzky-Golay first derivative하였을 때가 RMSEP 가 $0.553g\;kg^{-1}$, 이었으며 생잎에서도 RMSEP는 $1.047g\;kg^{-1}$로 나타났다. 이와 같은 견과로서 사과의 생잎과 건조잎의 분석이 근적외분석기술에 의해 가능할 것으로 판단된다.
The objective of this study was to predict total bacteria count of pork meats by using the portable electronic nose systems developed throughout two stages of the prototypes. Total bacteria counts were measured for pork meats stored at $4^{\circ}C$ for 21days and compared with the signals of the electronic nose systems. PLS(Partial least square), PCR (Principal component regression), MLR (Multiple linear regression) models were developed for the prediction of total bacteria count of pork meats. The coefficient of determination ($R_p{^2}$) and root mean square error of prediction (RMSEP) for the models were 0.789 and 0.784 log CFU/g with the 1st system for the pork loin, 0.796 and 0.597 log CFU/g with the 2nd system for the pork belly, and 0.661 and 0.576 log CFU/g with the 2nd system for the pork loin respectively. The results show that the developed electronic system has potential to predict total bacteria count of pork meats.
Spectroscopic measurement method based on visible and near-infrared wavelengths was prominent technology for rapid and non-destructive evaluation of internal quality of fruits. Reflectance measurement was performed to evaluate firmness, soluble solid content, and acid content of truss tomatoes by hyperspectral reflectance imaging system. The Vis/NIR reflectance spectra was acquired from truss tomatoes sorted by 6 ripening stages. The multivariable analysis based on partial least square (PLS) was used to develop regression models with several preporcessing methods, such as smoothing, normalization, multiplicative scatter correction (MSC), and standard normal variate (SNV). The best model was selected in terms of coefficient of determination of calibration ($R_c^2$) and full cross validation ($R_{cv}^2$), and root mean standard error of calibration (RMSEC) and full cross validation (RMSECV). The results of selected models were 0.8976 ($R_p^2$), 6.0207 kgf (RMSEP) with gaussian filter of smoothing, 0.8379 ($R_p^2$), $0.2674^{\circ}Bx$ (RMSEP) with the mean of normalization, and 0.7779 ($R_p^2$), 0.1033% (RMSEP) with median filter of smoothing for firmness, soluble solid content (SSC), and acid content, respectively. Results show that Vis / NIR hyperspectral reflectance imaging technique has good potential for the measurement of internal quality of truss tomato.
Optical diffuse reflectance sensing has potential for rapid and reliable on-site estimation of soil properties. For good results, proper calibration to measured soil properties is required. One issue is whether it is necessary to develop calibrations using samples from the specific area or areas (e.g., field, soil series) in which the sensor will be applied, or whether a general "factory" calibration is sufficient. A further question is if specific calibration is required, how many sample points are needed. In this study, these issues were addressed using data from 42 paddy fields representing 14 distinct soil series accounting for 74% of the total Korean paddy field area. Partial least squares (PLS) regression was used to develop calibrations between soil properties and reflectance spectra. Model evaluation was based on coefficient of determination ($R^2$) root mean square error of prediction (RMSEP), and RPD, the ratio of standard deviation to RMSEP. When sample data from a soil series were included in the calibration stage (full information calibration), RPD values of prediction models were increased by 0.03 to 3.32, compared with results from calibration models not including data from the test soil series (calibration without site-specific information). Higher $R^2$ values were also obtained in most cases. Including some samples from the test soil series (hybrid calibration) generally increased RPD rapidly up to a certain number of sample points. A large portion of the potential improvement could be obtained by adding about 8 to 22 points, depending on the soil properties to be estimated, where the numbers were 10 to 18 for pH, 18-22 for EC, and 8 to 22 for total C. These results provide guidance on sampling and calibration requirements for NIR soil property estimation.
Parsons, David;Van, Nguyen Huu;Malau-Aduli, Aduli E.O.;Ba, Nguyen Xuan;Phung, Le Dinh;Lane, Peter A.;Ngoan, Le Duc;Tedeschi, Luis O.
Asian-Australasian Journal of Animal Sciences
/
제25권9호
/
pp.1237-1247
/
2012
The objective of this study was to evaluate the predictions of dry matter intake (DMI) and average daily gain (ADG) of Vietnamese Yellow (Vang) purebred and crossbred (Vang with Red Sindhi or Brahman) bulls fed under Vietnamese conditions using two levels of solution (1 and 2) of the large ruminant nutrition system (LRNS) model. Animal information and feed chemical characterization were obtained from five studies. The initial mean body weight (BW) of the animals was 186, with standard deviation ${\pm}33.2$ kg. Animals were fed ad libitum commonly available feedstuffs, including cassava powder, corn grain, Napier grass, rice straw and bran, and minerals and vitamins, for 50 to 80 d. Adequacy of the predictions was assessed with the Model Evaluation System using the root of mean square error of prediction (RMSEP), accuracy (Cb), coefficient of determination ($r^2$), and mean bias (MB). When all treatment means were used, both levels of solution predicted DMI similarly with low precision ($r^2$ of 0.389 and 0.45 for level 1 and 2, respectively) and medium accuracy (Cb of 0.827 and 0.859, respectively). The LRNS clearly over-predicted the intake of one study. When this study was removed from the comparison, the precision and accuracy considerably increased for the level 1 solution. Metabolisable protein was limiting ADG for more than 68% of the treatment averages. Both levels differed regarding precision and accuracy. While level 1 solution had the least MB compared with level 2 (0.058 and 0.159 kg/d, respectively), the precision was greater for level 2 than level 1 (0.89 and 0.70, respectively). The accuracy (Cb) was similar between level 1 and level 2 (p = 0.8997; 0.977 and 0.871, respectively). The RMSEP indicated that both levels were on average under-or over-predicted by about 190 g/d, suggesting that even though the accuracy (Cb) was greater for level 1 compared to level 2, both levels are likely to wrongly predict ADG by the same amount. Our analyses indicated that the level 1 solution can predict DMI reasonably well for this type of animal, but it was not entirely clear if animals consumed at their voluntary intake and/or if the roughness of the diet decreased DMI. A deficit of ruminally-undegradable protein and/or a lack of microbial protein may have limited the performance of these animals. Based on these evaluations, the LRNS level 1 solution may be an alternative to predict animal performance when, under specific circumstances, the fractional degradation rates of the carbohydrate and protein fractions are not known.
Low, Kah Hin;Zain, Sharifuddin Md.;Abas, Mhd. Radzi;Misran, Misni;Mohd, Mustafa Ali
대한화학회지
/
제53권6호
/
pp.717-726
/
2009
Triton X-100이 함유된 상태에서 정색시약인 1-(2-thiazolylazo)-2-naphthol이 첨가된 물에서 구리 (II), 니켈(II)과 아연(II)의 동시 분광광도법적 정량을 위한 다변량 모델들이 개발되었다. 분광학적 간섭의 단점을 극복하기 위해서, 주성분회귀분석법(PCR)과 부분최소자승법(PLS) 다변량 분석법적 접근이 적용되었다. 다양한 시험 세트를 사용하여 본 방법의 수행이 입증되었고 그 결과들이 비교되었다. 일반적으로 PLS와 PCR 모델들 사이에 분석적 수행에서의 심각한 차이가 없었다. $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$ 의 세 성분들을 사용한 예측의 제곱근 평균 제곱 오차(RMSEP)들은 각각 0.018, 0.010, 0.011 ppm이었다. 또한 감도, 분석감도, 검출한계(LOD)와 같은 가치들의 측면들이 평가되었다. 본 논문에서 제안하는 과정이 화합물 혼합용액과 수돗물 속의 $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$의 동시 검출에 적용되었을 때에 높은 신뢰도가 성취되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.