• 제목/요약/키워드: RMSEP(root mean square error of prediction)

검색결과 14건 처리시간 0.029초

태양광 발전량 예측을 위한 빅데이터 처리 방법 개발 (Development of Solar Power Output Prediction Method using Big Data Processing Technic)

  • 정재천;송치성
    • 시스템엔지니어링학술지
    • /
    • 제16권1호
    • /
    • pp.58-67
    • /
    • 2020
  • A big data processing method to predict solar power generation using systems engineering approach is developed in this work. For developing analytical method, linear model (LM), support vector machine (SVN), and artificial neural network (ANN) technique are chosen. As evaluation indices, the cross-correlation and the mean square root of prediction error (RMSEP) are used. From multi-variable comparison test, it was found that ANN methodology provides the highest correlation and the lowest RMSEP.

지상용 초분광 스캐너를 활용한 사과의 당도예측 모델의 성능향상을 위한 연구 (Study of Prediction Model Improvement for Apple Soluble Solids Content Using a Ground-based Hyperspectral Scanner)

  • 송아람;전우현;김용일
    • 대한원격탐사학회지
    • /
    • 제33권5_1호
    • /
    • pp.559-570
    • /
    • 2017
  • 본 연구에서는 야외에서 자료 취득이 가능하며 한 번에 다량의 사과를 촬영할 수 있는 지상용 초분광 스캐너를 활용하여 사과의 분광정보와 당도와의 부분최소제곱회귀분석(PLSR, Partial Least Square Regression)을 수행하였으며, 최적의 예측모델을 구축하기 위한 다양한 전처리기법의 적용가능성을 평가하고 VIP(Variable Importance in Projection)점수를 통한 최적밴드를 산출하였다. 이를 위하여 360-1019 nm영역에서 촬영된 515밴드의 초분광 영상에서 70개의 분광곡선을 취득하였으며, 디지털광도계를 이용하여 당도($^{\circ}Brix$)를 측정하였다. 사과의 분광특성과 당도사이의 회귀모델을 구축하였으며, 최적의 예측모델은 모델 예측치와 실측치간의 결정계수($r_p^2$, coefficient of determination of prediction)와 RMSECV(Root Mean Square Error of Cross Validation), RMSEP(Root Mean Square Error of Prediction)등을 고려하여 선정하였다. 그 결과 산란보정 기법의 대표적인 MSC(Multiplicative Scatter Correction)의 기반의 전처리기법이 가장 효과적이었으며, MSC와 SNV(Standard Normal Variate)를 조합한 경우 RMSECV와 RMSEP가 각각 0.8551과 0.8561로 가장 낮았고, $r_c^2$$r_p^2$은 각각 0.8533과 0.6546으로 가장 높았다, 또한 360-380, 546-690, 760, 915, 931-939, 942, 953, 971, 978, 981, 988, 992-1019 nm 등이 당도 측정을 위한 가장 영향력 있는 파장영역으로 나타났다. 해당 영역의 분광값을 가지고 PLSR을 수행한 결과, 전파장대를 사용할 때보다 RMSEP가 0.6841로 감소하고 $r_p^2$는 0.7795로 증가하는 것을 확인하였다. 본 연구를 통하여 사과의 당도측정에 있어 야외에서 취득한 초분광 영상자료의 활용 가능성을 확인하였으며, 이는 필드자료 및 센서 활용분야의 확장가능성을 보여준다.

Prediction of Nutrient Composition and In-Vitro Dry Matter Digestibility of Corn Kernel Using Near Infrared Reflectance Spectroscopy

  • Choi, Sung Won;Lee, Chang Sug;Park, Chang Hee;Kim, Dong Hee;Park, Sung Kwon;Kim, Beob Gyun;Moon, Sang Ho
    • 한국초지조사료학회지
    • /
    • 제34권4호
    • /
    • pp.277-282
    • /
    • 2014
  • Nutritive value analysis of feed is very important for the growth of livestock, and ensures the efficiency of feeds as well as economic status. However, general laboratory analyses require considerable time and high cost. Near-infrared reflectance spectroscopy (NIRS) is a spectroscopic technique used to analyze the nutritive values of seeds. It is very effective and less costly than the conventional method. The sample used in this study was a corn kernel and the partial least square regression method was used for evaluating nutrient composition, digestibility, and energy value based on the calibration equation. The evaluation methods employed were the coefficient of determination ($R^2$) and the root mean squared error of prediction (RMSEP). The results showed the moisture content ($R^2_{val}=0.97$, RMSEP=0.109), crude protein content ($R^2_{val}=0.94$, RMSEP=0.212), neutral detergent fiber content ($R^2_{val}=0.96$, RMSEP=0.763), acid detergent fiber content ($R^2_{val}=0.96$, RMSEP=0.142), gross energy ($R^2_{val}=0.82$, RMSEP=23.249), in vitro dry matter digestibility ($R^2_{val}=0.68$, RMSEP=1.69), and metabolizable energy (approximately $R^2_{val}$ >0.80). This study confirmed that the nutritive components of corn kernels can be predicted using near-infrared reflectance spectroscopy.

Mid-infrared (MIR) spectroscopy for the detection of cow's milk in buffalo milk

  • Anna Antonella, Spina;Carlotta, Ceniti;Cristian, Piras;Bruno, Tilocca;Domenico, Britti;Valeria Maria, Morittu
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.531-538
    • /
    • 2022
  • In Italy, buffalo mozzarella is a largely sold and consumed dairy product. The fraudulent adulteration of buffalo milk with cheaper and more available milk of other species is very frequent. In the present study, Fourier transform infrared spectroscopy (FTIR), in combination with multivariate analysis by partial least square (PLS) regression, was applied to quantitatively detect the adulteration of buffalo milk with cow milk by using a fully automatic equipment dedicated to the routine analysis of the milk composition. To enhance the heterogeneity, cow and buffalo bulk milk was collected for a period of over three years from different dairy farms. A total of 119 samples were used for the analysis to generate 17 different concentrations of buffalo-cow milk mixtures. This procedure was used to enhance variability and to properly randomize the trials. The obtained calibration model showed an R2 ≥ 0.99 (R2 cal. = 0.99861; root mean square error of cross-validation [RMSEC] = 2.04; R2 val. = 0.99803; root mean square error of prediction [RMSEP] = 2.84; root mean square error of cross-validation [RMSECV] = 2.44) suggesting that this method could be successfully applied in the routine analysis of buffalo milk composition, providing rapid screening for possible adulteration with cow's milk at no additional cost.

근적외 분석법을 응용한 사과의 생잎과 건조잎의 질소분석 (Determination of Nitrogen in Fresh and Dry Leaf of Apple by Near Infrared Technology)

  • 장광재;서상현;강연복;한효일;박우철
    • 한국토양비료학회지
    • /
    • 제37권4호
    • /
    • pp.259-265
    • /
    • 2004
  • 사과의 영양진단에서 사과잎 분석을 신속히 하기 위한 방법을 모색하기 위해 생잎과 건조잎을 이용해 근적의 스펙트럼을 측정하고 이를 질소 함량과의 최적의 상관관계를 도출하기 위해 부분소자승(PLS)과 주성분회귀(PCR)과 같은 다변량 분석법을 이용하여 비파괴 검량식을 작성하였다. 또한 검량식 작성에서 비파괴 측정 정확도를 향상시키기 위하여 smoothing, mean normalization, multiplicative scatter correction (MSC). derivative 등의 다양한 데이터 전처리 조작을 수행하여 정확도 향상 가능성을 조사하였다. 사과 건조잎의 비파괴 측정 가능성을 조사한 결과 PLS-1 모델에서 Norris first derivate하였을 태 RMSEP가 $0.6999g\;kg^{-1}$ 로 가장 좋았으며, 생잎은 Savitzky-Golay first derivate하였을 때에 RMSEP 가 $1.202g\;kg^{-1}$으로 가장 좋았다. 건조잎의 PCR 모델은 mean normalization 처리 후 Savitzky-Golay first derivative하였을 때가 RMSEP 가 $0.553g\;kg^{-1}$, 이었으며 생잎에서도 RMSEP는 $1.047g\;kg^{-1}$로 나타났다. 이와 같은 견과로서 사과의 생잎과 건조잎의 분석이 근적외분석기술에 의해 가능할 것으로 판단된다.

육류 신선도 판별을 위한 휴대용 전자코 시스템 설계 및 성능 평가 II - 돈육의 미생물 총균수 예측을 통한 전자코 시스템 성능 검증 (Design and performance evaluation of portable electronic nose systems for freshness evaluation of meats II - Performance analysis of electronic nose systems by prediction of total bacteria count of pork meats)

  • 김재곤;조병관
    • 농업과학연구
    • /
    • 제38권4호
    • /
    • pp.761-767
    • /
    • 2011
  • The objective of this study was to predict total bacteria count of pork meats by using the portable electronic nose systems developed throughout two stages of the prototypes. Total bacteria counts were measured for pork meats stored at $4^{\circ}C$ for 21days and compared with the signals of the electronic nose systems. PLS(Partial least square), PCR (Principal component regression), MLR (Multiple linear regression) models were developed for the prediction of total bacteria count of pork meats. The coefficient of determination ($R_p{^2}$) and root mean square error of prediction (RMSEP) for the models were 0.789 and 0.784 log CFU/g with the 1st system for the pork loin, 0.796 and 0.597 log CFU/g with the 2nd system for the pork belly, and 0.661 and 0.576 log CFU/g with the 2nd system for the pork loin respectively. The results show that the developed electronic system has potential to predict total bacteria count of pork meats.

초분광 영상을 이용한 송이토마토의 비파괴 품질 예측 (Non-destructive quality prediction of truss tomatoes using hyperspectral reflectance imagery)

  • 김대용;조병관;김영식
    • 농업과학연구
    • /
    • 제39권3호
    • /
    • pp.413-420
    • /
    • 2012
  • Spectroscopic measurement method based on visible and near-infrared wavelengths was prominent technology for rapid and non-destructive evaluation of internal quality of fruits. Reflectance measurement was performed to evaluate firmness, soluble solid content, and acid content of truss tomatoes by hyperspectral reflectance imaging system. The Vis/NIR reflectance spectra was acquired from truss tomatoes sorted by 6 ripening stages. The multivariable analysis based on partial least square (PLS) was used to develop regression models with several preporcessing methods, such as smoothing, normalization, multiplicative scatter correction (MSC), and standard normal variate (SNV). The best model was selected in terms of coefficient of determination of calibration ($R_c^2$) and full cross validation ($R_{cv}^2$), and root mean standard error of calibration (RMSEC) and full cross validation (RMSECV). The results of selected models were 0.8976 ($R_p^2$), 6.0207 kgf (RMSEP) with gaussian filter of smoothing, 0.8379 ($R_p^2$), $0.2674^{\circ}Bx$ (RMSEP) with the mean of normalization, and 0.7779 ($R_p^2$), 0.1033% (RMSEP) with median filter of smoothing for firmness, soluble solid content (SSC), and acid content, respectively. Results show that Vis / NIR hyperspectral reflectance imaging technique has good potential for the measurement of internal quality of truss tomato.

광반사를 이용한 한국 논 토양 특성센서를 위한 샘플링과 캘리브레이션 요구조건 (Sampling and Calibration Requirements for Optical Reflectance Soil Property Sensors for Korean Paddy Soils)

  • 이규승;이동훈;정인규;정선옥
    • Journal of Biosystems Engineering
    • /
    • 제33권4호
    • /
    • pp.260-268
    • /
    • 2008
  • Optical diffuse reflectance sensing has potential for rapid and reliable on-site estimation of soil properties. For good results, proper calibration to measured soil properties is required. One issue is whether it is necessary to develop calibrations using samples from the specific area or areas (e.g., field, soil series) in which the sensor will be applied, or whether a general "factory" calibration is sufficient. A further question is if specific calibration is required, how many sample points are needed. In this study, these issues were addressed using data from 42 paddy fields representing 14 distinct soil series accounting for 74% of the total Korean paddy field area. Partial least squares (PLS) regression was used to develop calibrations between soil properties and reflectance spectra. Model evaluation was based on coefficient of determination ($R^2$) root mean square error of prediction (RMSEP), and RPD, the ratio of standard deviation to RMSEP. When sample data from a soil series were included in the calibration stage (full information calibration), RPD values of prediction models were increased by 0.03 to 3.32, compared with results from calibration models not including data from the test soil series (calibration without site-specific information). Higher $R^2$ values were also obtained in most cases. Including some samples from the test soil series (hybrid calibration) generally increased RPD rapidly up to a certain number of sample points. A large portion of the potential improvement could be obtained by adding about 8 to 22 points, depending on the soil properties to be estimated, where the numbers were 10 to 18 for pH, 18-22 for EC, and 8 to 22 for total C. These results provide guidance on sampling and calibration requirements for NIR soil property estimation.

Evaluation of a Nutrition Model in Predicting Performance of Vietnamese Cattle

  • Parsons, David;Van, Nguyen Huu;Malau-Aduli, Aduli E.O.;Ba, Nguyen Xuan;Phung, Le Dinh;Lane, Peter A.;Ngoan, Le Duc;Tedeschi, Luis O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권9호
    • /
    • pp.1237-1247
    • /
    • 2012
  • The objective of this study was to evaluate the predictions of dry matter intake (DMI) and average daily gain (ADG) of Vietnamese Yellow (Vang) purebred and crossbred (Vang with Red Sindhi or Brahman) bulls fed under Vietnamese conditions using two levels of solution (1 and 2) of the large ruminant nutrition system (LRNS) model. Animal information and feed chemical characterization were obtained from five studies. The initial mean body weight (BW) of the animals was 186, with standard deviation ${\pm}33.2$ kg. Animals were fed ad libitum commonly available feedstuffs, including cassava powder, corn grain, Napier grass, rice straw and bran, and minerals and vitamins, for 50 to 80 d. Adequacy of the predictions was assessed with the Model Evaluation System using the root of mean square error of prediction (RMSEP), accuracy (Cb), coefficient of determination ($r^2$), and mean bias (MB). When all treatment means were used, both levels of solution predicted DMI similarly with low precision ($r^2$ of 0.389 and 0.45 for level 1 and 2, respectively) and medium accuracy (Cb of 0.827 and 0.859, respectively). The LRNS clearly over-predicted the intake of one study. When this study was removed from the comparison, the precision and accuracy considerably increased for the level 1 solution. Metabolisable protein was limiting ADG for more than 68% of the treatment averages. Both levels differed regarding precision and accuracy. While level 1 solution had the least MB compared with level 2 (0.058 and 0.159 kg/d, respectively), the precision was greater for level 2 than level 1 (0.89 and 0.70, respectively). The accuracy (Cb) was similar between level 1 and level 2 (p = 0.8997; 0.977 and 0.871, respectively). The RMSEP indicated that both levels were on average under-or over-predicted by about 190 g/d, suggesting that even though the accuracy (Cb) was greater for level 1 compared to level 2, both levels are likely to wrongly predict ADG by the same amount. Our analyses indicated that the level 1 solution can predict DMI reasonably well for this type of animal, but it was not entirely clear if animals consumed at their voluntary intake and/or if the roughness of the diet decreased DMI. A deficit of ruminally-undegradable protein and/or a lack of microbial protein may have limited the performance of these animals. Based on these evaluations, the LRNS level 1 solution may be an alternative to predict animal performance when, under specific circumstances, the fractional degradation rates of the carbohydrate and protein fractions are not known.

화학계량학적 방법을 사용한 Triton X-100이 함유된 1-(2-Thiazolylazo)-2-Naphthol을 사용한 구리, 니켈과 아연의 동시 분광광도법적 정량 (Simultaneous Spectrophotometric Determination of Copper, Nickel, and Zinc Using 1-(2-Thiazolylazo)-2-Naphthol in the Presence of Triton X-100 Using Chemometric Methods)

  • Low, Kah Hin;Zain, Sharifuddin Md.;Abas, Mhd. Radzi;Misran, Misni;Mohd, Mustafa Ali
    • 대한화학회지
    • /
    • 제53권6호
    • /
    • pp.717-726
    • /
    • 2009
  • Triton X-100이 함유된 상태에서 정색시약인 1-(2-thiazolylazo)-2-naphthol이 첨가된 물에서 구리 (II), 니켈(II)과 아연(II)의 동시 분광광도법적 정량을 위한 다변량 모델들이 개발되었다. 분광학적 간섭의 단점을 극복하기 위해서, 주성분회귀분석법(PCR)과 부분최소자승법(PLS) 다변량 분석법적 접근이 적용되었다. 다양한 시험 세트를 사용하여 본 방법의 수행이 입증되었고 그 결과들이 비교되었다. 일반적으로 PLS와 PCR 모델들 사이에 분석적 수행에서의 심각한 차이가 없었다. $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$ 의 세 성분들을 사용한 예측의 제곱근 평균 제곱 오차(RMSEP)들은 각각 0.018, 0.010, 0.011 ppm이었다. 또한 감도, 분석감도, 검출한계(LOD)와 같은 가치들의 측면들이 평가되었다. 본 논문에서 제안하는 과정이 화합물 혼합용액과 수돗물 속의 $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$의 동시 검출에 적용되었을 때에 높은 신뢰도가 성취되었다.