• Title/Summary/Keyword: RMSE(root mean square error)

검색결과 665건 처리시간 0.031초

GPS/INS와 LIDAR자료를 이용한 자동 항공영상 정사보정 개발 (Development of Automatic Airborne Image Orthorectification Using GPS/INS and LIDAR Data)

  • 장재동
    • 한국정보통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.693-699
    • /
    • 2006
  • 항공관측으로 얻어지는 디지털 영상은 지리정보로써의 가치를 가지기 위해서는 정밀하게 정사보정되어야 한다. 항공영상의 자동 정사보정을 위해 카메라와 함께 설치된 GPS/INS (Global Positioning System/Inertial Navigation System) 자료와 LIDAR (LIght Detection And Ranging) 지표고도 자료를 이용하였다. 본 연구에서 635개 항공영상이 생산되고 LIDAR 자료는 정사보정에 적용하기 위하여 격자영상 형태로 변환되었다. 영상 전체적으로 일정한 명도를 가지기 위해서, flat field 수정을 영상에 적용하였다. 영상은 내부방위와 GPS/INS를 이용한 외부방위를 계산하여 기하보정되고, LIDAR 지표고도 영상을 이용하여 정사보정되었다. 정사보정의 정도는 임의의 5개 영상과 LIDAR 반사강도 영상에서 50개 지상기준점을 수집하여 검증되었다. 검정된 결과로써 RMSE (Root Mean Square Error)는 화소 해상도의 단지 2배에 해당하는 0.387 m를 도출하였다. 높은 정도를 가진 자동 항공영상 정사보정 방법은 항공영상 산업에 적용 가능할 것이다.

중복도와 지상기준점에 따른 고정익 UAV 기반 정사영상 및 DSM의 품질 평가 (Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs)

  • 유용호;최재완;최석근;정성혁
    • 대한공간정보학회지
    • /
    • 제24권3호
    • /
    • pp.3-9
    • /
    • 2016
  • UAV(unmanned aerial vehicle)은 적은 비용으로 고해상도 정사영상과 DSM(digital surface model)을 빠르게 생성할 수 있다. 그러나, UAV에 의하여 획득된 정사영상과 DSM의 수직 및 수평위치 정확도는 영상처리 기술, 항공사진의 품질, GCPs(ground control points)의 개수와 위치, 촬영경로 상의 중복도에 영향을 받는다. 본 연구에서는, 정사영상과 DSM의 생성에 있어 중복도와 GCP의 개수가 미치는 영향을 분석하고자 하였다. 위치정확도는 9쌍의 자료를 이용한 RMSE(root mean square error)을 기반으로 평가하였다. 실험결과, GCP의 개수와 중복도는 수평위치 및 수직위치 정확도에 영향을 미치는 것을 확인하였다.

센서모델링과 영상매칭을 통한 PAN과 MS 밴드간 상호좌표등록 (Co-registration Between PAN and MS Bands Using Sensor Modeling and Image Matching)

  • 이창노;오재홍
    • 한국측량학회지
    • /
    • 제39권1호
    • /
    • pp.13-21
    • /
    • 2021
  • 아리랑3호, 국토위성 등 고해상도 국토관측 위성은 일반적으로 가시광 및 근적외선 영역의 영상을 획득하기 위한 MS (Multispectral) CCD (Charge Coupled Device) 센서와 MS보다 4배의 공간해상도를 갖는 고해상도 PAN (Panchromatic) 영상을 획득하기 위한 CCD 센서의 조합으로 된 카메라를 탑재한다. 카메라 내에서 PAN과 MS CCD라인이 일정한 간격을 갖게 설치되기 때문에 위성이 궤도를 지나가며 대상물을 약간의 시간차를 갖고 촬영하게 되며 따라서 영상 내의 대상물 위치도 달라진다. PAN과 MS 영상융합을 위해서는 PAN과 MS영상간의 정밀한 상호좌표등록이 필요한데, 본 연구에서는 센서모델링을 통한 기법과 영상 매칭의 융합을 통한 상호좌표등록을 수행하였다. PAN과 MS 상호 센서모델링을 통해 초기 상호좌표등록을 수행하고, 영상 매칭을 통해 그 정밀도를 향상시켜 약 RMSE (Root Mean Square Error) 0.2 화소의 정밀도를 확보할 수 있었다.

딥러닝 기반 GNSS 천정방향 대류권 습윤지연 추정 연구 (Estimation of GNSS Zenith Tropospheric Wet Delay Using Deep Learning)

  • 임수현;배태석
    • 한국측량학회지
    • /
    • 제39권1호
    • /
    • pp.23-28
    • /
    • 2021
  • 최근 딥러닝을 활용한 데이터 분석 연구가 다양한 분야에서 진행되고 있다. 본 논문에서는 딥러닝 모델인 MLP (Multi-Layer Perceptron)와 LSTM (Long Short-Term Memory) 모델을 통해 ZWD (Zenith tropospheric Wet Delay)을 추정함으로써 딥러닝을 활용한 GNSS (Global Navigation Satellite System) 기반 기상 연구를 수행하였다. 딥러닝 모델은 기상 데이터와 천정방향 대류권 총 지연, 건조지연을 통해 추정한 ZWD로 학습되었고, 학습에 사용되지 않은 기상 데이터를 학습된 모델에 적용하여 두 모델에서 센티미터 수준의 RMSE (Root Mean Square Error)로 ZWD 결과를 산출하였다. 추후 해안지역의 GNSS 데이터를 함께 사용하고 시간 해상도를 높여 다양한 상황에서도 ZWD가 추정될 수 있도록 추가적인 연구가 수행될 필요가 있다.

UWB 시스템에서 실내 측위를 위한 순환 신경망 기반 거리 추정 (Recurrent Neural Network Based Distance Estimation for Indoor Localization in UWB Systems)

  • 정태윤;정의림
    • 한국정보통신학회논문지
    • /
    • 제24권4호
    • /
    • pp.494-500
    • /
    • 2020
  • 본 논문에서는 초광대역 (Ultra-wideband, UWB) 시스템에서 실내 위치 측위를 위한 새로운 거리 추정 기법을 제안한다. 제안하는 기법은 딥러닝 기법 중 하나인 순환 신경망 (RNN)을 기반으로 한다. 순환신경망은 시계열 신호를 처리하는데 유용한데 UWB 신호 역시 시계열 데이터로 볼 수 있기 때문에 순환신경망을 사용한다. 구체적으로, UWB 신호가 IEEE 802.15.4a 실내 채널모델을 통과하고 수신된 신호에서 순환신경망 회귀를 통해 송신기와 수신기 사이의 거리를 추정하도록 학습한다. 이렇게 학습된 순환신경망 모델의 성능은 새로운 수신신호를 이용하여 검증하며 기존의 임계값 기반의 거리 추정 기법과도 비교한다. 성능지표로는 제곱근 평균추정에러 (root mean square error, RMSE)를 사용한다. 컴퓨터 모의실험 결과에 따르면 제안하는 거리 추정 기법은 수신신호의 신호 대 잡음비 (signal to noise ratio, SNR) 및 송수신기 사이의 거리와 상관없이 기존 기법보다 항상 월등히 우수한 성능을 보인다.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.73-80
    • /
    • 2024
  • 본 연구는 토픽 모델링과 장단기 기억(LSTM) 신경망을 결합하여 한국 종합주가지수(KOSPI) 예측의 정확도를 향상하는 방법을 제안한다. 본 논문에서는 LDA(Latent Dirichlet Allocation) 기법을 이용해 금융 뉴스 데이터에서 금리 인상 및 인하와 관련된 10개의 주요 주제를 추출하고, 추출된 주제를 과거 KOSPI 지수와 함께 LSTM 모델에 입력하여 KOSPI 지수를 예측하는 모델을 제안한다. 제안된 모델은 과거 KOSPI 지수를 LSTM 모델에 입력하여 시계열 예측 방법과 뉴스 데이터를 입력하여 토픽 모델링하는 방법을 결합하여 KOSPI 지수를 예측하는 특성을 가진다. 제안된 모델의 성능을 검증하기 위해, 본 논문에서는 LSTM의 입력 데이터의 종류에 따라 4개의 모델(LSTM_K 모델, LSTM_KNS 모델, LDA_K 모델, LDA_KNS 모델)을 설계하고 각 모델의 예측 성능을 제시하였다. 예측 성능을 비교한 결과, 금융 뉴스 주제 데이터와 과거 KOSPI 지수 데이터를 입력으로 하는 LSTM 모델(LDA_K 모델)이 가장 낮은 RMSE(Root Mean Square Error)를 기록하여 가장 좋은 예측 성능을 보였다.

LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석 (Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model)

  • 강민상;손은국;이진재;강승진
    • 풍력에너지저널
    • /
    • 제15권2호
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

Strength prediction of rotary brace damper using MLR and MARS

  • Mansouri, I.;Safa, M.;Ibrahim, Z.;Kisi, O.;Tahir, M.M.;Baharom, S.;Azimi, M.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.471-488
    • /
    • 2016
  • This study predicts the strength of rotary brace damper by analyzing a new set of probabilistic models using the usual method of multiple linear regressions (MLR) and advanced machine-learning methods of multivariate adaptive regression splines (MARS), Rotary brace damper can be easily assembled with high energy-dissipation capability. To investigate the behavior of this damper in structures, a steel frame is modeled with this device subjected to monotonic and cyclic loading. Several response parameters are considered, and the performance of damper in reducing each response is evaluated. MLR and MARS methods were used to predict the strength of this damper. Displacement was determined to be the most effective parameter of damper strength, whereas the thickness did not exhibit any effect. Adding thickness parameter as inputs to MARS and MLR models did not increase the accuracies of the models in predicting the strength of this damper. The MARS model with a root mean square error (RMSE) of 0.127 and mean absolute error (MAE) of 0.090 performed better than the MLR model with an RMSE of 0.221 and MAE of 0.181.

Analysis of Radiosonde Daily Bias by Comparing Precipitable Water Vapor Obtained from Global Positioning System and Radiosonde

  • Park, Chang-Geun;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.367-375
    • /
    • 2010
  • In this study, we compared the precipitable water vapor (PWV) data derived from the radiosonde observation data at Sokcho Observatory and the PWV data at Sokcho Global Positioning System (GPS) Observatory provided by Korea Astronomy and Space Science Institute, from 0000 UTC, June 1, 2007 to 1200 UTC, May 31, 2009, and analyzed the radiosonde bias between the day and the night. In the scatter diagram of the daytime and nighttime radiosonde PWV data and the GPS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study. In addition, for all the rainfall events, the tendency that the wet bias of the radiosonde PWV increased as the GPS PWV decreased and the dry bias of the radiosonde PWV increased as the GPS PWV increased was significantly less distinctive in nighttime than in daytime. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the second year, regardless of nighttime or daytime rainfall, and the non-rainfall root mean square error (RMSE) was similar to that of the previous studies, while the rainfall RMSE was larger to a certain extent.

운량 및 일조시간을 이용한 우리나라의 시간당 전일사량의 평가 (Global Hourly Solar Irradiation Estimation using Cloud Cover and Sunshine Duration in South Korea)

  • 이관호
    • KIEAE Journal
    • /
    • 제11권1호
    • /
    • pp.15-20
    • /
    • 2011
  • Computer simulation of buildings and solar energy systems is being used increasingly in energy assessments and design. For the six locations (Seoul, Incheon, Daejeon, Deagu, Gwangju and Busan) in South Korea where the global hourly solar irradiation (GHSI) is currently measured, GHSI was calculated using a comparatively simple cloud cover radiation model (CRM) and sunshine fraction radiation model (SFRM). The result was that the measured and calculated values of GHSI were similar for the six regions. Results of cloud cover and sunshine fraction models have been compared with the measured data using the coefficient of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). The strength of correlation R2 varied within similar ranges: 0.886-0.914 for CRM and 0.908-0.934 for SFRM. Average MBE for the CRM and SFRM were 6.67 and 14.02 W/m2, respectively, and average RMSE 104.36 and 92.15 W/m2. This showed that SFRM was slightly accurate and used many regions as compared to CRM for prediction of GHSI.