• Title/Summary/Keyword: RMS current

Search Result 343, Processing Time 0.026 seconds

RMS Current Estimation Technique for Reliability Analysis of Multiple Semiconductor Interconnects (신뢰성 해석을 위한 반도체 다중연결선의 RMS 전류 추정 기법)

  • Kim, Ki-Young;Kim, Deok-Min;Kim, Seok-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1547-1554
    • /
    • 2011
  • As process parameters scale, interconnect width are reduced rapidly while the current flowing through interconnects does not decrease in a proportional manner. This effect increases current density in metal interconnects which may result in poor reliability. Since RMS(root-mean-square) current limits are used to evaluate self-heating and short-time stress failures caused by high-current pluses, RMS current estimation is very important to guarantee the reliability of semiconductor systems. Hence, it is critical to estimate the current limits through interconnects earlier in semiconductor design stages. The purpose of this paper is to propose a fast, yet accurate RMS current estimation technique that can offer a relatively precise estimate by using closed-form equations. The efficiency and accuracy of the proposed method have been verified through simulations using HSPICE for a vast range of interconnect parameters.

Study on the Fast Predication of the Wind-Driven Current in the Sachon Bay (사천만에서 취송류의 신속예측에 관한 연구)

  • 최석원;조규대;김동선
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.309-318
    • /
    • 1999
  • In order to fast predict the wind-driven current in a small bay, a convolution method in which the wind-driven current can be generated only wih the local wind is developed and applied in the Sachon Bay. The root mean square(rms) ratio defined as the ratio of the rms error to the rms speed is 0.37. The rms ratio is generally less than 0.2, except for all the mouths of Junju Bay and Namhae-do and in the region between Saryang Island and Sachon. The spatial average of the recover rate of kinetic energy(rrke) is 87%. Thus, the predicted wind-driven current by the convolution model is in a good agreement with the computed one by the numerical model. The raio of the difference between observed residual current (Vr) and predicted wind-driven current (Vc) to a residual current, that is, (Vr-Vc)/Vr shows 56%, 62% at 2 moorings in the Sachon Bay.

  • PDF

Current and voltage loading tests off resistive SFCL

  • 최효상;현옥배;김혜림;황시돌;박권배
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.241-246
    • /
    • 2002
  • We have performed the current and voltage loading tests of resistive superconducting fault current limiters (SFCLS) based on $YBa_2$$Cu_3$$O_{7}$(YBCO) films with the diameter of 2 inch. The SFCL consists of meander-type YBCO stripes covered with 200 nm Au layer grown in situ for current shunt and heat dispersion at hot spots. The minimum quench current of an SFCL unit was about 25 Apeak. Seven SFCL units were connected in parallel fur the current load ing tests at power source of 100 $V_{rms}$ $/2,000A_{rms}$. This SFCL units had maximum limiting current of 170 Apeak during the fault instant and then successfully controlled the fault current below 100 Apeak within 1~2 msec after short circuit. Increased short current also reduced the quench completion time with little change of current limiting characterization. We connected six SFCL units in series fur the voltage loading tests at power source of $1,200 V_{rms}$/170 $A_{rms}$ at this time. The shunt resistors were inserted into each SFCL unit to eliminate power imbalance originated from serial connection of SFCL units. Each SFCL unit was quenched simultaneously during the fault condition. The current increased up to 40 $A_{peak}$ and decreased to 14 $A_{peak}$ after 3 cycles. Quench was completed within 1 msec after the fault. We confirmed operating characteristics of 140 kVA($120 A_{rms}$ $\times$ 1,200 $V_{rms}$) SFCL and presented the manufacturing possibility of 3.3 kV SFCL using 4 inch YBCO films.BCO films.lms.

  • PDF

Characteristics on Arc Waveform and RMS of Current by Conductive Powder (도전성 분말에 의한 아크전류의 파형 및 실효값 특성)

  • Kim, Doo Hyun;Kang, Yang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.63-68
    • /
    • 2013
  • This paper is aimed to make an analysis on characteristics of the parallel arc waveform and RMS of current at the electrical tracking state by conductive powder. In order to achieve the goal in this paper, field state investigation at metal processing companies in Chung-Nam province area was conducted. With the field state investigation, conductive powder were collected from metal processing companies. By experiment on electrical connector(breaker, connector) over which the conductive powder were scattered, arc waveform and RMS of current were measured. The measured waveform and RMS(root-mean-square) of current were analyzed to describe characteristics and patterns of electrical arc by the conductive powder. It was proved that conductive powder on electrical connector can flow electrical current enough to make electrical fire with high thermal energy. Also the change of sine waveform and RMS of current can be used to find out relationship between electrical fire and fault signal by conductive powder. The results obtained in this paper will be very helpful for the prevention of electrical fires occurred at the metal processing companies.

RMS Detector of Multiharmonic Signals

  • Petrovic, Predrag B.
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.431-438
    • /
    • 2013
  • This paper presents a new realization of the implicit root-mean-square (RMS) detector, employing three second-generation current conveyors and MOS transistors. The proposed circuit can be applied in measuring the RMS value of complex, periodic signals, represented in the form of the Fourier series. To verify the theoretical analysis, circuit Simulation Program with Integrated Circuit Emphasis simulations and experiment results are included, showing agreement with the theory.

Fault Current Limitation Characteristics of the Bi-2212 Bulk Coil for Distribution-class Superconducting Fault Current Limiters (배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성)

  • Sim, Jung-Wook;Lee, Hai-Gun;Yim, Sung-Woo;Kim, Hye-Rim;Hyun, Ok-Bae;Park, Kwon-Bae;Lee, Bang-Wook;Oh, Il-Sung;Kim, Ho-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.277-281
    • /
    • 2007
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter (SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of $200V_{rms}$ and fault current of $12kA_{rms}\;and\;25kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of $12kA_{rms}\;and\;25kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}\;within\;0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLS.

Application of the Convolution Method on the Fast Prediction of the Wind-Driven Current in a Samll Bay (소규모 만에서 취송류의 신속예측을 위한 convolution 기법의 적용)

  • 최석원;조규대;윤홍주
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.299-307
    • /
    • 1999
  • In order to fast predict the wind-driven current in a small bay, a convolution method in which the wind-driven current can be generated only with the local wind is developed and applied in the idealized bay and the idealized Sachon Bay. The accuracy of the convlution method is assessed through a series of the numerical experiements carried out in the jidealized bay and the idealized Sachon Bay. The optimum response function for the convolution method is obtained by minimizing the root man square (rms) difference between the current given by the numerical model and the current given by the convolution method. The north-south component of the response function shows simultaneous fluctuations in the wind and wind-driven current at marginal region while it shows "sea-saw" fluctuations (in which the wind and wind-driven current have opposite direction) at the central region in the idealized Sachon Bay. The present wind is strong enough to influence on the wind-driven current especially in the idealized Sachon Bay. The spatial average of the rms ratio defined as the ratio of the rms error to the rms speed is 0.05 in the idealized bay and 0.26 in the idealized Sachon Bay. The recover rate of kinetic energy(rrke) is 99% in the idealized bay and 94% in the idealized Sachon Bay. Thus, the predicted wind-driven current by the convolution model is in a good agreement with the computed one by the numerical model in the idealized bay and the idealized Sachon Bay.achon Bay.

  • PDF

Fault current limitation characteristics of the Bi-2212 bulk coil for distribution-class superconducting fault current limiters (배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성)

  • Sim, Jung-Wook;Kim, Hye-Rim;Yim, Seong-Woo;Hyun, Ok-Bae;Lee, Hai-Gun;Park, Kwon-Bae;Kim, Ho-Min;Lee, Bang-Wook;Oh, Il-Sung;Breuer, Frank;Bock, Joachim
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.639-640
    • /
    • 2006
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter(SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of 200 $V_{rms}$ and fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}$ within $0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLs.

  • PDF

An Algorithm for Calculating the RMS Value of the Non-Sinusoidal Current Used in AC Resistance Spot Welding

  • Zhou, Kang;Cai, Lilong
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1139-1147
    • /
    • 2015
  • In this paper, an algorithm based on a model analysis of the online calculation of the root-mean-square (RMS) value of welding current for single-phase AC resistance spot welding (RSW) was developed. The current is highly nonlinear and typically non-sinusoidal, which makes the measuring and controlling actions difficult. Though some previous methods focused on this issue, they were so complex that they could not be effectively used in general cases. The electrical model of a single-phase AC RSW was analyzed, and then an algorithm for online calculation of the RMS value of the welding current was presented. The description includes two parts, a model-dependent part and a model-independent part. Using a previous work about online measurement of the power factor angle, the first part can be solved. For the second part, although the solution of the governing equation can be directly obtained, a lot of CPU time must be consumed due to the fact that it involves a lot of complex calculations. Therefore, a neural network was employed to simplify the calculations. Finally, experimental results and a corresponding analysis showed that the proposed algorithm can obtain the RMS values with a high precision while consuming less time when compared to directly solving the equations.

The RMS Current Stress Reduction Technique in Link Capacitor of Two-stage AC/DC Converter (2단 AC/DC 컨버터의 링크 캐패시터 전류 스트레스 저감 기법)

  • Jang, Doo-Hee;Jung, Young-Jin;Roh, Chung-Wook;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.449-456
    • /
    • 2009
  • The RMS(Root Mean Square) current stress reduction technique for the PFC link capacitor is proposed. Although the various parameter is exist for optimizing the link capacitor, the RMS current stress is the most weighty practical parameter. The proposed C-L filter can reduce effectively the RMS current stress by filtering the output current. And with the C-L-L-C filter proposed in this paper, the more RMS current stress can be reduce because it filters not only the output current, like C-L filter, but also the input current of DC/DC stage. The proposed filter is simple to design and have no effect on the control part of the PFC because of the very low crossover frequency. To confirm the validity of proposed filter, theoretical analysis, the design guide, verification of experimental results are presented.