• Title/Summary/Keyword: RMS calculation

Search Result 59, Processing Time 0.033 seconds

Accurate Calculation of RMS Value of Grid Voltage with Synchronization of Phase Angle of Sampled Data (샘플링 시점의 위상각 동기화를 이용한 계통전압 실효값의 정확한 계산 방법)

  • Ham, Do-Hyun;Kim, Soo-Bin;Song, Seung-Ho;Lee, Hyun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.381-388
    • /
    • 2018
  • A novel and simple algorithm for accurate calculation of RMS voltage is proposed in a digitally controlled grid-tie inverter system. Given that the actual frequency of grid voltage is continuously changing, the constant sampling frequency cannot be a multiple number of the fundamental frequency. Therefore, the RMS of grid voltage contains periodic oscillations due to the differences in the phase angle of sampled data during calculation. The proposed algorithm precisely calculates and updates the initial phase angle of the first sampled voltage in a half-cycle period using phase-locked loop, which is commonly utilized for phase angle detection in grid-tie inverter systems. The accuracy and dynamic performance of the proposed algorithm are compared with those of other algorithms through various simulations and experiments.

An Algorithm for Calculating the RMS Value of the Non-Sinusoidal Current Used in AC Resistance Spot Welding

  • Zhou, Kang;Cai, Lilong
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1139-1147
    • /
    • 2015
  • In this paper, an algorithm based on a model analysis of the online calculation of the root-mean-square (RMS) value of welding current for single-phase AC resistance spot welding (RSW) was developed. The current is highly nonlinear and typically non-sinusoidal, which makes the measuring and controlling actions difficult. Though some previous methods focused on this issue, they were so complex that they could not be effectively used in general cases. The electrical model of a single-phase AC RSW was analyzed, and then an algorithm for online calculation of the RMS value of the welding current was presented. The description includes two parts, a model-dependent part and a model-independent part. Using a previous work about online measurement of the power factor angle, the first part can be solved. For the second part, although the solution of the governing equation can be directly obtained, a lot of CPU time must be consumed due to the fact that it involves a lot of complex calculations. Therefore, a neural network was employed to simplify the calculations. Finally, experimental results and a corresponding analysis showed that the proposed algorithm can obtain the RMS values with a high precision while consuming less time when compared to directly solving the equations.

Wind-induced responses of supertall buildings considering soil-structure interaction

  • Huang, Yajun;Gu, Ming
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.223-234
    • /
    • 2018
  • In this study, a simplified three-dimensional calculation model is developed for the dynamic analysis of soil-pile group-supertall building systems excited by wind loads using the substructure method. Wind loads acting on a 300-m building in different wind directions and terrain conditions are obtained from synchronous pressure measurements conducted in a wind tunnel. The effects of soil-structure interaction (SSI) on the first natural frequency, wind-induced static displacement, root mean square (RMS) of displacement, and RMS of acceleration at the top of supertall buildings are analyzed. The findings demonstrate that with decreasing soil shear wave velocity, the first natural frequency decreases and the static displacement, RMS of displacement and RMS of acceleration increase. In addition, as soil material damping decreases, the RMS of displacement and the RMS of acceleration increase.

Advanced RMS Calculation Method for the ITER CS, VS1, CC AC/DC Converter

  • Kim, S.M.;Suh, J.H.;Park, H.J.;Oh, J.S.;Yoo, M.H.
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.301-302
    • /
    • 2019
  • ITER CS, VS, CC AC/DC Converter는 4상한 동작을 하며, PCS(Plasma Control System)에서 명령하는 출력 전압 제어를 컨버터 교류 입력 전압 변동을 보상하는 Feed-forward 방식을 사용한다. Feed-forward 제어를 위하여 교류 입력 전압에 대한 실시간 정밀 측정이 가능한 RMS 계산이 필요하다. 본 논문은 RMS 연산에 대한 개선된 방법을 제안하면서 시뮬레이션과 실험을 통해 해당 알고리즘을 검증하였고 이에 대한 내용을 논의하고자 한다.

  • PDF

Phase Angle Synchronization for Accurate Calculation of Half-cycle RMS Value (정밀한 반주기 실효값 계산을 위한 위상각 동기화 알고리즘)

  • Ham, Do-Hyun;Lee, Kook-Sun;Song, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.111-112
    • /
    • 2014
  • 본 논문에서는 그리드 코드에서 요구하는 반주기 실효치 계산 방식을 국내 계통에 적용하기 위한 실효값(RMS) 계산 알고리즘을 제안한다. 정확한 실효값을 계산하기 위해서는 국내 계통 60Hz에 적합한 샘플링 주파수가 적용되어야 한다. 따라서 기존의 실효값 계산 알고리즘과 제안하는 실효값 알고리즘을 시뮬레이션 및 실험데이터를 제시하고, 속응성 및 오차 특성을 비교 제시한다.

  • PDF

Equivalent 10-Hz Flicker Index Calculation Using Half-cycle Sliding Window and Recursive RMS Method (반주기 슬라이딩 윈도우와 재귀적 실효치 계산을 이용한 국내 플리커 평가지수 산출기법)

  • Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2017-2020
    • /
    • 2011
  • Flicker, which is also known as voltage fluctuation, is an electromagnetic phenomenon generated by large scale nonlinear loads, such as arc furnaces and welding machines. Since a severe and continuous flicker can cause to some damages to electrically sensitive loads as well as human's visual irritations, it needs to be appropriately managed by being accurately measured, quantified and assessed. In Korea, an equivalent 10-Hz flicker index, shortly ${\Delta}V10$, is used to determine the permission limit of flicker. This paper presents an efficient calculation of the flicker index by using a half-cycle sliding window and a recursive method, showing a concrete calculating procedure of ${\Delta}V10$ from the viewpoint of signal processing.

Calculation of the Least Significant Change Value of Bone Densitometry Using a Dual-Energy X-ray Absorptiometry System

  • Han-Kyung Seo;Do-Cheol Choi;Cheol-Min Shim;Jin-Hyeong Jo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.95-98
    • /
    • 2023
  • Purpose: The precision error of a bone density meter reflects the equipment and reproducibility of results by an examiner. Precision error values can be expressed as coefficient of variation (CV), CV%, and root mean square-SD (RMS-SD). The International Society for Clinical Densitometry (ISCD) currently recommends using RMS-SD as the precision error value. When a 95% confidence interval is applied, the least significant change (LSC) value is calculated by multiplying the precision error value by 2.77. Exceeding the LSC value reflects a significant difference in measured bone density. Therefore, the LSC value of a bone density equipment is an essential factor for accurately determining a patient's bone density. Accordingly, we aimed to calculate the LSC value of a bone density meter (Lunar iDXA, GE) and compare it with the value recommended by the ISCD. We also assessed whether the value measured by the iDXA equipment was below the LSC value recommended by ISCD. Material and Methods: The bone densities of the lumbar spine and thighs of 30 participants were measured twice, and the LSC values were calculated using the precision calculation tool provided by the ISCD (http://www.iscd.org). To check the reproducibility of the measurement, patients were asked to completely dismount from the equipment after the first measurement; the patient was then repositioned before proceeding with the second measurement. Results: The LSC values derived using the CV% values recommended by the ISCD were 5.3% for the lumbar spine and 5.0% for the thigh. The LSC values measured using our bone density equipment were 2.47% for the lumbar spine and 1.61% for the thigh. The LSC value using RMS-SD was 0.031 g/cm2 for the lumbar spine and 0.017 g/cm2 for the thigh. Conclusion: that the findings confirm that the CV% value measured using our bone density meter and the LSC value using RMS-SD were maintained very stably. This can be helpful for obtaining accurate measurements during bone density follow-up examinations.

Noise Criteria for the Calculation of Response Spectra (응답스펙트럼 계산을 위한 잡음기준)

  • 노명현;최강룡;윤철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.238-246
    • /
    • 2003
  • By using simulated ground motions, which is sum of earthquake signals and noise, we measured the distortion of response spectra due to noise. We found that the distortion is more closely related to the signal-to-noise (S/N) ratio of root-mean-square (RMS) measurement than that of conventional peak measurement. Given a S/M ratio, the distortion of absolute acceleration response spectra is independent on the earthquake magnitude, while that of relative displacement response spectra has a strong dependence on the earthquake magnitude. This means that, when we calculate response spectra from time histories, we can efficiently predict the distortion of acceleration response spectra simply by measuring the RMS SJN ratios, or the distortion of displacement response spectra by combining the RMS S/N ratios and the earthquake magnitudes.

  • PDF

3-Phase RMS Voltage Measurement Method of Virtual Frequence using Instantaneous Power Component Concept (순시전력 합성 개념을 이용한 가상주파수 3상 실효전압 계측기법)

  • Park, Seong-Mi;Yang, Ji-Hoon;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.251-257
    • /
    • 2019
  • This paper proposes a new measurement method using virtual power concept to measure the effective value of 3-phase voltage with variable frequency. The conventional effective value measurement method uses a method of integrating data sampled during one or half cycle of the power voltage and averaging it. In this method, since the effective voltage is calculated every cycle, a time delay occurs in the measured effective voltage and it is s a problem to measure the effective value of a device whose frequency varies from time to time, such as a generator. The proposed 3-phase voltage rms measurement method has an advantage that it can measure accurate voltage RMS value regardless of measurement frequency variation. In particular, there is an advantage in that it is possible to measure a 3-phase effective voltage rather than an average value of the effective voltage of each phase in a 3-phase unbalance voltage. In addition, the validity of the proposed method is verified by using the Psim simulation tool and the experimental results are analyzed by applying the proposed measurement algorithm to the actual three phase synchronous generator voltage measurement experiment.