• Title/Summary/Keyword: RLS estimation

Search Result 89, Processing Time 0.019 seconds

Real- Time Estimation of the Ventricular Relaxation Time Constant

  • Chun Honggu;Kim Hee Chan;Sohn Daewon
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.87-93
    • /
    • 2005
  • A new method for real-time estimating left ventricular relaxation time constant (T) from the left ventricular (LV) pressure waveform, based on the isovolumic relaxation model, is proposed. The presented method uses a recursive least squares (RLS) algorithm to accomplish real-time estimation. A new criterion to detect the end-point of the isovolumic relaxation period (IRP) for the estimation of T is also introduced, which is based on the pattern analysis of mean square errors between the original and reconstructed pressure waveforms. We have verified the performance of the new method in over 4,600 beats obtained from 70 patients. The results demonstrate that the proposed method provides more stable and reliable estimation of τ than the conventional 'off-line' methods.

Adaptive Control of A One-Link Flexible Robot Manipulator (유연한 로보트 매니퓰레이터의 적응제어)

  • 박정일;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.52-61
    • /
    • 1993
  • This paper deals with adaptive control method of a robot manipulator with one-flexible link. ARMA model is used as a prediction and estimation model, and adaptive control scheme consists of parameter estimation part and adaptive controller. Parameter estimation part estimates ARMA model's coefficients by using recursive least-squares(RLS) algorithm and generates the predicted output. Variable forgetting factor (VFF) is introduced to achieve an efficient estimation, and adaptive controller consists of reference model, error dynamics model and minimum prediction error controller. An optimal input is obtained by minimizing input torque, it's successive input change and the error between the predicted output and the reference output.

  • PDF

Capacitance Estimation of the Submodule Capacitors in Modular Multilevel Converters for HVDC Applications

  • Jo, Yun-Jae;Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1752-1762
    • /
    • 2016
  • To achieve higher reliability in the modular multilevel converters (MMC) for HVDC transmission systems, the internal condition of the DC capacitors of the submodules (SM) needs to be monitored regularly. For an online estimation of the SM capacitance, a controlled AC current with double the fundamental frequency is injected into the circulating current loop of the MMC, which results in current and voltage ripples in the SM capacitors. The capacitor currents are calculated from the arm currents and their switching states. By processing these AC voltage and current components with digital filters, their capacitances are estimated by a recursive least square (RLS) algorithm. The validity of the proposed scheme has been verified by simulation results for a 300-MW, 300-kV HVDC system. In addition, its feasibility has been verified by experimental results obtained with a reduced-scale prototype. It has been shown that the estimation errors for both the simulation and experimental tests are 1.32% at maximum.

A Weighted Block Adaptive Estimation for STBC Single-Carrier System in Frequency-Selective Time-Varying Channels (다중 경로 시변 채널 환경에서 시공간 블록 부호 단일 반송파 시스템을 위한 가중치 블록 적응형 채널 추정 알고리즘)

  • Baek, Jong-Seob;Kwon, Hyuk-Jae;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.338-347
    • /
    • 2007
  • In this paper, a weighted block adaptive channel estimation (WBA-CE) for a space-time block-coded (STBC) single-carrier transmission with a cyclic-prefix is proposed. In operation of the WBA-CE, a STBC matrix-wise block for filter input symbols is first formulated. Applying a weighted a posteriori error vector-based least-square (LS) criterion for this block, the coefficient correction terms of the WBA-CE are then computed. An approximate steady-state excess mean-square error (EMSE) of the WBA-CE for the stationary optimal coefficient is also analyzed. Simulation results show in a time-varying typical urban (TU) channel that the proposed channel estimator provides better bit-error-rate (BER) performances than conventional algorithms such as the NLMS and RLS channel estimators.

A Study on Real-Time Inertia Estimation Method for STSAT-3 (과학기술위성 3호 실시간 관성모멘트 추정 기법 연구)

  • Kim, Kwangjin;Lee, Sangchul;Oh, Hwa-Suk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • The accurate information of mass properties is required for the precise control of the spacecraft. The mass properties, mass and inertia, are changeable by some reasons such as consumption of propellant, deployment of solar panel, sloshing, environmental effect, etc. The gyro-based attitude data including noise and bias reduces the control accuracy so it needs to be compensated for improvement. This paper introduces a real-time inertia estimation method for the attitude determination of STSAT-3, Korea Science Technology Satellite. In this method we first filter the gyro noise with the Extended Kalman Filter(EKF), and then estimate the moment of inertia by using the filtered data from the EKF based on the Recursive Least Square(RLS).

A Novel Method for the Identification of the Rotor Resistance and Mutual Inductance of Induction Motors Based on MRAC and RLS Estimation

  • Jo, Gwon-Jae;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.492-501
    • /
    • 2018
  • In the rotor-flux oriented control used in induction motors, the electrical parameters of the motors should be identified. Among these parameters, the mutual inductance and rotor resistance should be accurately tuned for better operations. However, they are more difficult to identify than the stator resistance and stator transient inductance. The rotor resistance and mutual inductance can change in operations due to flux saturation and heat generation. When detuning of these parameters occurs, the performance of the control is degenerated. In this paper, a novel method for the concurrent identification of the two parameters is proposed based on recursive least square estimation and model reference adaptive control.

Identification of DC-Link Capacitance for Single-Phase AC/DC PWM Converters

  • Pu, Xing-Si;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.270-276
    • /
    • 2010
  • In this paper, a capacitance estimation scheme for DC-link capacitors for single-phase AC/DC PWM converters is proposed. Under the no-load condition, a controlled AC current (30[Hz]) is injected into the input side, which then causes AC voltage ripples at the DC output side. Or, a controlled AC voltage can be directly injected into the DC output side. By extracting the AC voltage/current and power components on the DC output side using digital filters, the capacitance value can be calculated, where the recursive least squares (RLS) algorithm is used. The proposed methods can be simply implemented with software only and additional hardware is not required. From the experiment results, a high accuracy estimation of capacitances less than 0.85% has been obtained.

A novel OCV Hysteresis Modeling for SOC estimation of Lithium Iron Phosphate battery (리튬인산철 배터리를 위한 새로운 히스테리시스 모델링)

  • Nguyen, Thanh Tung;Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.75-76
    • /
    • 2016
  • The relationship of widely used Open circuit Voltage (OCV) versus State of Charge (SOC) is critical for any reliable SOC estimation technique. However, the hysteresis existing in all type of battery which has been come to the market leads this relationship to a complicated one, especially in Lithium Iron Phosphate (LiFePO4) battery. An accurate model for hysteresis phenomenon is essential for a reliable SOC identification. This paper aims to investigate and propose a method for hysteresis modeling. The SOC estimation is done by using Extended Kalman Filter (EKF), the parameter of the battery is modeled by Auto Regressive Exogenous (ARX) and estimated by using Recursive Least Square (RLS) filter to tract each element of the parameter of the model.

  • PDF

An Adaptive Algorithm Using A Polyphase Subband Decomposition (다위상 서브밴드 분해를 이용한 적응 알고리즘)

  • 주상영;이동규;이두수
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.182-185
    • /
    • 2000
  • In this paper, we present a new adaptive filter structure which is based on polyphase decomposition of the filter to be adapted. This structure uses wavelet transform to acquire transform-domain coefficients of the input signal. With this coefficients RLS algorithm is used for adaptation. Particularly, using the polyphase parallel structure, we can trace the system which has very long impulse response with only increasing the subband, and show that computational savings can be achieved. The proposed structure was applied to system identification for performance estimation and compared with fullband adaptive filter.

  • PDF

Time-Delay Estimation using the Wavelet Based Adaptive Filtering (웨이블릿 기반 적응필터를 이용한 시지연 추정)

  • 이영진;유경렬
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.845-848
    • /
    • 2001
  • 본 논문에서는 multipath 환경에서 효과적으로 시지연을 추정하기 위한 알고리즘을 제안하였다. 제안된 알고리즘은 전처리 과정으로 웨이블릿 변환을 적용하였으며, 적응 알고리즘으로는 RLS를 계층적인 구조로 나타낸 HRLS(Hierarchical RLS)를 사용하였다. 시지연은 신호 분해과정 이후 각각의 부밴드에서 primary 신호와 reference 신호 사이의 MSE(Mean of Squared Error)를 최소화 시키는 적응 메카니즘을 사용하여 추정하였다. 아울러 모의실험을 통하여 제안된 알고리즘의 성능을 검증하였다.

  • PDF