• Title/Summary/Keyword: RLC model

Search Result 35, Processing Time 0.02 seconds

Numerical Analysis of Intense Electric Current Pulse to Disperse Shaped Charge Metal Jet (성형작약탄 금속제트 산란을 위한 대전류 펄스의 수치해석적 연구)

  • Park, Hyeong Gyu;Kim, Dong Kyu;Kim, Si Woo;Joo, Jae Hyun;Song, Woo Jin;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • The electromagnetic force induced by an intense electric current pulse, which generates an electromagnetic field around the metal jet originating from a shaped charge, can disperse and scatter the high-speed metal jet. An electric device consisting of an RLC circuit applies an intense electric current pulse that flows in the circuit while the metal jet passes between two electrodes. In this study, the metal jet formation was simulated using the ALE technique in 2-D, and a 3-D finite element model was mapped using 2-D simulation results to induce the electric current directly. The deformed shapes of the metal jet and the electromagnetic force were calculated using a finite element analysis by inducing the electric current directly, and the major parameters of the intense electric current pulse for breaking up the metal jet were examined.

Effects on the Accident Reduction of Red Light Camera Using Empirical Bayes Method (경험적 베이즈 방법을 이용한 무인신호위반단속장비의 사고감소 효과)

  • Kim, Tae-Young;Park, Byung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.46-54
    • /
    • 2009
  • This study deals with the effects on the accident reduction according to the installation of RLC (red light cameras). The objective is to analyze the effects on the accident reduction using EB (Empirical Bayes) method. In pursuing the above, the study uses the 728 accident data occurred at the 28 intersections which RLC are installed. The main results are as follows. First, the effects of accident reduction were analyzed to be 20.74% by simple before-after study method. Second, the safety performance functions (SPF) were developed by the Poisson and negative binominal regression models, and since the over-dispersion parameter was close to zero, Poisson model was evaluated to be more appropriate than the negative binominal model. Also, the Poisson model was analyzed to be statistically significant because its ${\rho}^2$ value was 0.409. Finally, the results of analysis using an EB method showed that the accidents were reduced by range from 3.89 to 29.23%.

  • PDF

Antenna Efficiency Measurement Using the Modified Wheeler Cap Method (개선된 Wheeler Cap 방식을 이용한 안테나 효율 측정)

  • Cho Chi-Hyun;Choo Ho-Sung;Park Ik-Mo;Kang Jin-Seob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.317-323
    • /
    • 2006
  • The conventional Wheeler cap method can extract the reliable efficiency of the antenna when the antenna operates as a simple series or parallel RLC circuit model. This method, however, may give an unreliable efficiency when the antenna under test has a complicated operating principle. In this paper, we revisit the conventional Wheeler cap method and propose a modified Wheeler cap method basedon the high-order circuit model. The proposed method can provide an accurate efficiency even for the antenna with a more complicated operating principle. Then we calculate efficiencies of other antennas with different operating principles and compare the results with the simulations.

Modeling of an On-Chip Power/Ground Meshed Plane Using Frequency Dependent Parameters

  • Hwang, Chul-Soon;Kim, Ki-Yeong;Pak, Jun-So;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.192-200
    • /
    • 2011
  • This paper proposes a new modeling method for estimating the impedance of an on-chip power/ground meshed plane. Frequency dependent R, L, and C parameters are extracted based on the proposed method so that the model can be applied from DC to high frequencies. The meshed plane model is composed of two parts: coplanar multi strip (CMS) and conductor-backed CMS. The conformal mapping technique and the scaled conductivity concept are used for accurate modeling of the CMS. The developed microstrip approach is applied to model the conductor-backed CMS. The proposed modeling method has been successfully verified by comparing the impedance of RLC circuit based on extracted parameters and the simulated impedance using a 3D-field solver.

Signal Transient and Crosstalk Model of Capacitively and Inductively Coupled VLSI Interconnect Lines

  • Kim, Tae-Hoon;Kim, Dong-Chul;Eo, Yung-Seon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.260-266
    • /
    • 2007
  • Analytical compact form models for the signal transients and crosstalk noise of inductive-effect-prominent multi-coupled RLC lines are developed. Capacitive and inductive coupling effects are investigated and formulated in terms of the equivalent transmission line model and transmission line parameters for fundamental modes. The signal transients and crosstalk noise expressions of two coupled lines are derived by using a waveform approximation technique. It is shown that the models have excellent agreement with SPICE simulation.

A Study on the FSK Synchronization and MODEM Techniques for Mobile Communication Part I :Design of Quadrature Detector for FSK Demodulation. (이동통신을 위한 FSK동기 및 변복조기술에 관한 연구 I부. FSK 복조를 위한 Quadrature Detector 설계)

  • Kim, Gi-Yun;Choe, Hyeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • This paper presents a simulation model of the Quadrature detector to demodulate FSK signal, which is widely used in wireless paging system for its simple hardware implementation and economics of It fabrication. Quadrature detecter has nonlinear phase characteristic for changes linear changes of input signal frequency. So until now Quadrature detector system analysis remained a difficult problem and performance analysis has not been carried out adequately On these backgrounds, this paper presents the FSK signal demodulation process using Quadrature detector and optimal performance derived from digital simulation technique. First, PSN(Phase Shift Network) which is composed of analog RLC tank circuit is transformed into its equivalent digital transfer function using First-order-hold theorem. Though the demodulated outputs of the Quadrature detector for 4FSK are 4-level signals, only 2 comparators are used and it is shown that optimal performance can be obtained by choosing operation parameter Q value and threshold level decision which are proposed herein.

  • PDF

A Straightforward Estimation Approach for Determining Parasitic Capacitance of Inductors during High Frequency Operation

  • Kanzi, Khalil;Nafissi, Hanidreza R.;Kanzi, Majid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.339-353
    • /
    • 2014
  • A straightforward method for optimal determining of a high frequency inductor's parasitic capacitance is presented. The proposed estimation method is based on measuring the inductor's impedance samples over a limited frequency range bordering on the resonance point considering k-dB deviation from the maximum impedance. An optimized solution to k could be obtained by minimizing the root mean squared error between the measured and the estimated impedance values. The model used to provide the estimations is a parallel RLC circuit valid at resonance frequency which will be transferred to the real model considering the mentioned interval of frequencies. A straightforward algorithm is suggested and programmed using MATLAB which does not require a wide knowledge of design parameters and could be implemented using a spectrum analyzer. The inputs are the measured impedance samples as a function of frequency along with the diameter of the conductors. The suggested algorithm practically provides the estimated parameters of a real inductance model at different frequencies, with or without design information. The suggested work is different from designing a high frequency inductor; it is rather concentration of determining the parameters of an available real inductor that could be easily done by a recipe provided to a technician.

Correction of the Approximation Error in the Time-Stepping Finite Element Method

  • Kim, Byung-Taek;Yu, Byoung-Hun;Choit, Myoung-Hyun;Kim, Ho-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.229-233
    • /
    • 2009
  • This paper proposes a correction method for the error inherently created by time-step approximation in finite element analysis (FEA). For a simple RL and RLC linear circuit, the error in time-step analysis is analytically investigated, and a correction method is proposed for a non-linear system as well as a linear one. Then, for a practical inductor model, linear and non-linear time-step analyses are performed and the calculation results are corrected by the proposed methods. The accuracy of the corrected results is confirmed by comparing the electric input and output powers.

Estimation Method for Power Distribution Network of Impedance Characteristic on Printed Circuit Board (PCB상의 전력 배분망 설계를 위한 임피던스 계산법)

  • Cho Tae-ho;Park Joong-Ho;Baek Jong-Humn;Kim Seok-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • This paper proposes a new methodology for the estimation of impedance characteristics, which is one of the important issue in the power distribution network design of printed circuit boards. The modeling process of the proposed method divides the power distribution network into uniform segment, and each segment is modeled by distributed RLC transmission lines. Then, for the efficient computation of impedance characteristics in frequency domain. the proposed method uses a model-order reduction method.

Correlation of Peak Time Shift in Blood Pressure Waveform and PPG Based on Compliance Change Analysis in RLC Windkessel Model

  • Choi, Wonsuk;Cho, Jin-Ho
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • We explored how changes in blood vessel compliance affected the systolic rise time (SRT) of the maximum blood pressure (BP) peak wave and the diastolic fall time (DFT) of the minimal BP peak wave, compared to photoplethysmograpic (PPG) parameters, using a two-compartment, second-order, arterial Windkessel model. We employed earlier two-compartment Windkessel models and the components thereof to construct equivalent blood vessel circuits, and reproduced BP waveforms using PSpice technology. The SRT and DFT values were obtained via circuit simulation, considering variations in compliance (the dominant influence on blood vessel parameters attributable to BP changes). And then performed regression analysis to identify how compliance affected the SRT and DFT. We compared the SRTs and DFTs of BP waves to the PPG values by reference to BP changes in each subject. We confirmed that the time-shift propensities of BP waves and the PPG data were highly consistent. However, the time shifts differed significantly among subjects. These simulation and experimental results allowed us to construct an initial trend curve of individual BP peak time (measured via wrist PPG evaluations at three arm positions) that facilitated accurate individual BP estimations.