• Title/Summary/Keyword: RIN4

Search Result 415, Processing Time 0.019 seconds

Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives

  • Ray, Sujit Kumar;Macoy, Donah Mary;Kim, Woe-Yeon;Lee, Sang Yeol;Kim, Min Gab
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.503-511
    • /
    • 2019
  • As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1-interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.

Radiation-Induced Intratumoral Necrosis and Peritumoral Edema after Gamma Knife Radiosurgery for Intracranial Meningiomas

  • Lee, Sang-Ryul;Yang, Kyung-Ah;Kim, Sung-Kyu;Kim, Se-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.2
    • /
    • pp.98-102
    • /
    • 2012
  • Objective : To study the clinical significance and relevant factors of radiation-induced intratumoral necrosis (RIN) and peritumoral edema (PTE) after Gamma knife radiosurgery (GKRS) for intracranial meningiomas. Methods : We retrospectively analyzed the data of 64 patients who underwent GKRS for intracranial meningioma. The mean lesion volume was 4.9 cc (range, 0.3-20), and the mean prescription dose of 13.4 Gy (range, 11-18) was delivered to the mean 49.9% (range, 45-50) isodose line. RIN was defined as newly developed or enlarged intratumoral necrosis after GKRS. Results : RIN and new development or aggravation of PTE were observed in 21 (32.8%) and 18 (28.1%) cases of meningioma, respectively during the median follow-up duration of $19.9{\pm}1.0$ months. Among various factors, maximum dose (>25 Gy) and target volume (>4.5 cc) were significantly related to RIN, and RIN and maximum dose (>24 Gy) were significantly related to the development or aggravation of PTE. In 21 meningiomas with development of RIN after GKRS, there was no significant change of the tumor volume itself between the times of GKRS and RIN. However, the PTE volume increased significantly compared to that at the time of GKRS (p=0.013). The median interval to RIN after GKRS was $6.5{\pm}0.4$ months and the median interval to new or aggravated PTE was $7.0{\pm}0.7$ months. Conclusion : A close observation is required for meningiomas treated with a maximum dose >24 Gy and showing RIN after GKRS, since following or accompanying PTE may deteriorate neurological conditions especially when the location involves adjacent critical structures.

Effect of YCT on Insulin Secretion in RIN-m5F Cells (RIN-m5F 세포에서 야관청혈탕(夜關淸血湯)이 인슐린 분비에 미치는 영향)

  • Kim, Jin-Mi;Cho, Chung-Sik;Kim, Chul-Jung
    • The Journal of Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.20-37
    • /
    • 2010
  • Objective: This study was performed to investigate the effect of Yagwan-cheunghyeoltang (YCT) on insulin secretion in RIN-m5F cells. Methods: After treatment with various concentrations of YCT to RIN-m5F cells, cell viability, free radical-scavenging activity, SOD activity, and insulin secretion were measured. Additionally, insulin-related gene expressions were measured using real-time RT-PCR. Results: 1. YCT didn't show any influence on RIN-m5F cells viability. 2. YCT showed free radical-scavenging activity by 16% at $100{\mu}g/m{\ell}$ of concentration. 3. YCT showed enhancement of SOD activity by 60% at $100{\mu}g/m{\ell}$ of concentration. 4. YCT significantly increased insulin secretion in RIN-m5F cells in a dose-dependent manner. 5. YCT up-regulated INS-1, INS-2, IRS-1, IRS-2 and IRS-3 mRNA expressions compared to the control group. 6. YCT down-regulated INS-R, GCK, GLP-1R and GLP-2R mRNA expressions compared to the control group. Conclusion: YCT has pharmaceutical properties enhancing insulin production and controlling glucose-associated metabolism, and could be a candidate for drug development after further research.

Cost Effective Mutual Injection Locked F-P LD for WDM-PON System (WDM-PON 시스템을 위한 저가격 상호 주입 잠김 F-P LD)

  • Hwang, Ji-Hong;Lee, Hyuek-Jae;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • In this paper, we attempted a qualitative understanding of mutual injection locking without rigorous mathematics, and analyzed the proposed mutual injection locked light source. Also, a low-cost WDM-PON light source based on mutual injection locking using two unpolarized Fabry-Perot Laser Diodes (F-P LDs), was implemented. The RIN (Relative Intensity Noise) characteristic for the wavelength change of the F-P LD was measured, and when the variable wavelength range was 2.07 nm, it showed a RIN of at least -110 dB/Hz.