• Title/Summary/Keyword: RILs

Search Result 63, Processing Time 0.024 seconds

Comparison of Selection Efficiency between Marker-Assisted Selection and Phenotypic Selection for Development of Brown Planthopper Resistance Lines in Rice (벼멸구 저항성 계통선발을 위한 MAS의 선발효율 비교)

  • Kim, Suk-Man;Sohn, Jae-Keun
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.48-53
    • /
    • 2008
  • This study presents a case study designed to compare the selection efficiency between phenotypic selection (PS) and marker-assisted selection (MAS) in breeding of resistance lines to brown planthopper (BPH). The efficiency between PS and MAS were compared with four population such as the $F_2$, RILs ($F_6$), DH, and backcrosse ($BC_6F_5$) population, derived from a cross 'Samgang / Nagdong'. The resistance lines were selected using two markers, RM28493 and BpE18-3, related to BPH resistance were screened as resistance lines over 95% in PS. The costs required for BPH screening in the MAS system account for approximately 32% of the total costs of PS. The period needed to select the resistance plants was 30 days in PS and 7 days in MAS. Based on the results, we could establish the breeding system for selection of BPH resistance lines by MAS.

Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives

  • Ray, Sujit Kumar;Macoy, Donah Mary;Kim, Woe-Yeon;Lee, Sang Yeol;Kim, Min Gab
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.503-511
    • /
    • 2019
  • As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1-interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.

Analysis of genome variants in dwarf soybean lines obtained in F6 derived from cross of normal parents (cultivated and wild soybean)

  • Roy, Neha Samir;Ban, Yong-Wook;Yoo, Hana;Ramekar, Rahul Vasudeo;Cheong, Eun Ju;Park, Nam-Il;Na, Jong Kuk;Park, Kyong-Cheul;Choi, Ik-Young
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.19.1-19.9
    • /
    • 2021
  • Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.

QTL Mapping of Cold Tolerance at the Seedling Stage using Introgression Lines Derived from an Intersubspecific Cross in Rice

  • Park, In-Kyu;Oh, Chang-Sik;Kim, Dong-Min;Yeo, Sang-Min;Ahn, Sang-Nag
    • Plant Breeding and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Low-temperature stress is an important factor controlling the growth and development of rice (Oryza sativa L.) in temperate region. In this study, a molecular linkage map consisting of 136 SSR markers was employed to identify QTL associated with cold tolerance at the seedling stage. 80 recombinant inbred lines (RILs) from an intersubspecific cross between Milyang23 (O. sativa ssp. Indica) and Hapcheonaengmi3, a japonica weedy rice and the parents were evaluated for leaf discoloration and SAPD value of seedlings. Rice plants were grown for 15 days in the low-temperature condition (13/20℃ day/night) and the control condition (25/20℃ day/night) in the growth chamber. The degree of leaf discoloration showed a highly significant correlation with the SPAD value in the low-temperature plot (r = -0.708, P < 0.0001). A total of four QTLs for SPAD were identified and the phenotypic variance explained by each QTL ranged from 5.4 to 16.0%. Two QTLs detected in the control condition were located on chromosomes 2 and 5, respectively. Two QTL on chromosomes 1 and 4 were detected at the low-temperature condition and Hapcheonaengmi3 alleles increased the SPAD values at these loci. Substitution mapping was conducted to delimit the position of qSPA-4 using introgression lines derived from the same cross. Results indicated that qSPA-4 was located in a 810-Kb region flanked by RM16333 and RM16368. The results indicated that Hapcheonaengmi3 contains QTL alleles that are likely to improve cold tolerance of Indica rice.

Characterization of Purple-discolored, Uppermost Leaves of Soybean; QTL Mapping, HyperspectraI Imaging, and TEM Observation

  • JaeJin Lee;Jeongsun Lee;Seongha Kwon;Heejin You;Sungwoo Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.187-187
    • /
    • 2022
  • Purple-discoloration of the uppermost leaves has been observed in some soybean cultivars in recent years. The purpose of this study was to characterize the novel phenotypic changes between the uppermost and middle leaves via multiple approaches. First, quantitative trait loci mapping was conducted to detect loci associated with the novel phenotype using 85 recombinant inbred lines (RILs) of the 'Daepung' × PI 96983 population. 180K SNP data, a major quantitative trait locus (QTL) was identified at around 60 cM of chromosome 6, which accounts for 56% of total phenotypic variance. The genomic interval is about ~700kb, and a list of annotated genes includes the T-gene which is known to control pubescence and seed coat color and is presumed to encode flavonoid 35-hydroxylase (F3'H). Based on Hyperspectral imaging, the reflectance at 528-554 nm wavelength band was extremely reduced in the uppermost leaves compared to the middle (green leaves), which is presumed die to the accumulation of anthocyanins. In addition, purple-discolored leaf tissues were observed and compared to normal leaves using a transmission electronic microscope (TEM). Base on observations of the cell organelles, the purple-discolored uppermost leaves had many pigments formed in the epidermal cells unlike the normal middle leaves, and the cell wall thickness was twice as thick in the discolored leaves. The thickness of the thylakoid layer in the chloroplast the number of starch grains, the size of starch all decreased in the discolored leaves, while the number of plastoglobule and mitochondria increased.

  • PDF

Identification of Leaf Blast Resistance Genes Derived from a Korean Weedy Rice, Ganghwaaengmi 11 (잡초성벼인 강화앵미11 유래 잎도열병 저항성 유전자 탐색)

  • Suh, Jung-Pil;Cho, Young-Chan;Kim, Jeong-Ju;Shin, Young-Seop;Yang, Chang-Ihn;Roh, Jae-Hwan;Kim, Yeon-Gyu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.390-396
    • /
    • 2010
  • A weedy rice, Ganghwaaengmi 11, shows high level of leaf blast resistance. The chromosomal number and locations of genes conferring the leaf blast resistance were detected by QTL (quantitative trait loci) analysis using SSR markers in the 120 RILs (recombinant inbred lines) derived from the cross between Nagdongbyeo and Ganghwaaengmi 11. Ganghwaaengmi 11 expressed compatibility with 20 of the 45 inoculated blast isolates, in contrast to Nagdongbyeo with 44 compatible isolates. To identify QTLs affecting partial resistance, RILs were assessed in upland blast nursery in three regions and inoculated with selected nine blast isolates. QTLs for resistance to blast isolates were identified on chromosomes 7, 11 and 12. Three QTLs associated with blast resistance in nursery test at three regions were also detected on chromosomes 7, 11 and 12. The QTL commonly detected on chromosome 12 was only increased blast resistance by Ganghwaaengmi 11 allele. This QTL accounted for 60.3~78.6% of the phenotypic variation in the blast nursery test. OSR32 and RM101 markers tightly linked to QTL for blast resistance on chromosome 12 might be useful for marker-assisted selection (MAS) and gene pyramiding to improve the blast resistance of japonica rice.

Development of Elite Lines with Improved Eating Quality Using RIL Population Derived from the Korean Weedy Rice, Wandoaengmi6 (국내 잡초벼(완도앵미6) 유래 RILs 집단의 식미 관련 특성분석 및 우량계통 선발)

  • Kim, Suk-Man;Park, Seul-Gi;Park, Hyun-Su;Baek, Man-Kee;Jeong, Jong-Min;Cho, Young-Chan;Suh, Jung-Pil;Lee, Keon-Mi;Lee, Chang-Min;Kim, Choon-Song
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.4
    • /
    • pp.428-436
    • /
    • 2019
  • As the main objective of rice breeding programs, rice eating quality is one of critical factors directly determining the market price and the consumer preference. However, the genetic complexity of eating quality and the difficulty in accurate evaluation often constrain improvement of the eating quality in rice breeding programs. In addition, given that the rice eating quality of current cultivars has already reached some high-level, diversifying of genetic resources are demanded more than ever to improve the rice eating quality. In this study, we developed a recombinant inbred lines (RILs) population derive from Wandoaengmi6, a japonica-type Korean weedy rice with high eating quality and a high degree of glossiness of cooked rice. Year-to-year correlations between the traits in three years were shown normal distribution for major agronomic traits and physicochemical characteristics. After evaluating tested traits related to eating quality procedure, a total of ten lines were ultimately selected from the population. Increasement of the taste of cooked rice (TA) and the overall eating quality (OE) were confirmed in the selected lines, which are caused by alleles derived from Wandoaengmi6 without any linkage drag. These results indicate that the utility of wide genomic resources in Korean landrace could be of application in various rice breeding programs and countermeasure to contribute to properly response to climate change.

Distribution of DArT Markers in a Genetic Linkage Map of Tomato (토마토 유전자연관지도 상의 DarT 마커 분포)

  • Truong, Hai Thi Hong;Graham, Elaine;Esch, Elisabeth;Wang, Jaw-Fen;Hanson, Peter
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.664-671
    • /
    • 2010
  • A genetic linkage map was constructed using 188 $F_9$ RILs derived from a cross between $Solanum$ $lycopersicum$ H7996 (resistant to bacterial wilt) and $S.$ $pimpinellifolium$ WVa700 (highly susceptible to bacterial wilt). The map consisted of 361 markers including 260 DArTs, 74 AFLPs, 4 RFLPs, 1 SNP, and 22 SSRs. The resulting linkage map was comprised of 13 linkage groups covering 2042.7 cM. The genetic linkage map had an average map distance between markers of 5.7 cM, with an average DArT marker density of 1/7.9 cM. Based on the distribution of anchor SSR markers, 11 linkage groups were assigned to 10 chromosomes of tomato except chromosomes 5 and 12. The DArT markers were distributed across the genome in a similar way as other markers and showed the highest frequency of clustering (38.8%) at ${\leq}$ 0.5 cM intervals between adjacent markers, which is 3 times higher than AFLPs (13.5%). The present study is the first utilization of DArT markers in tomato linkage map construction.

QTLs analysis associated with a major agronomic traits in hanareum2×unkwang rice recombinant inbred line

  • Lee, Ji Yoon;Cho, Jun Hyeon;Kang, Ju Won;Shin, Dong Jin;Kim, Tae Heon;Song, You Chun;Han, Sang Ik;Park, Dong Soo;Son, Young Bo;Cho, Su Min;Oh, Myeong Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.101-101
    • /
    • 2017
  • This study was carried out to improve yield potential of Tongil type rice variety based on QTLs analysis associated with yield component using a total of 386 rice recombinant inbred lines (RILs) derived from a cross between Tongil type high yield variety "Hanareum2" and Japonica variety "Unkwang". 384 SNP markers were used, and 241 of them (62.6%) were polymorphic between Hanareum2 and Unkwang. One hundred forty-four QTLs in 11 traits, such as heading days, were detected. Most of them were 21 QTLs associated with 1000 grain weight and the least was 8 QTLs associated with panicle number. The QTL, qDTH3-2 associated with days to heading was identified to delay heading date for 2.4~2.6 day. Eleven QTLs were associated with culm length. The QTL, qCL1-2 on chromosome 1, was identified to decrease culm length. A total of 16 QTLs were detected for panicle length. Three QTLs, qPL3, qPL6, and qPL7-1 were increased panicle length. Seven QTLs related to panicle number except qPN7 were increased the number of panicle. Four QTLs related to grain number per panicle, qGNP2-1, qGNP6, and qGNP7, were increased the number of grains. Three QTLs associated with grain filling rate, qGFR1, qGFR2-2, and qGFR7-1 were increased grain filling rate. Twelve QTLs associated with 1,000 grain weight. were increased the grain weight. Fourteen QTLs were identified associated with grain length. 10 QTLs, such as qGL1-1, were increasing grain. Fifteen QTLs associated with grain width were detected. The 8 QTLs, such as qGW1-1, were elongated grain width. Seventeen QTLs were associated with grain thickness, and ten QTLs of them were increased grain thickness. We need further study to develop introgression lines of each QTL to improve yield potential of Tongil type rice variety.

  • PDF

QTLs Identification and Confiirmation of Field Resistance to Leaf Blast in Temperate japonica Rice (Oryza sativa L.)

  • Cho, Young-Chan;Kwon, Soon-Wook;Suh, Jung-Pil;Kim, Jeong-Ju;Lee, Jeom-Ho;Roh, Jae-Hwan;Oh, Myung-Kyu;Kim, Myeong-Ki;Ahn, Sang-Nag;Koh, Hee-Jong;Yang, Sae-Jun;Kim, Yeon-Gyu
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.269-276
    • /
    • 2008
  • Field resistance is defined as the resistance that allows effective control of a parasite under natural field condition and is durable when exposed to new races of that parasite. To identify the genes for field resistance to rice blast, quantitative trait loci (QTLs) conferring the resistance for races and blast nursery screening in japonica rice cultivars were detected and mapped using SSR markers. QTL analysis was carried out in 190 RILs population from the cross between Suweon365 (moderately resistant) and Chucheong (highly susceptible). Twelve QTLs against nine blast races inoculated were detected on chromosomes 1, 2, 4, 6, 7, 11 and 12. They explained from 5.1% to 34.9% of total phenotypic variation. Eight QTLs against blast nursery screening in four regions for three years were detected on chromosomes 1, 2, 4, 11 and 12. The phenotypic variation explained by each QTL ranged from 4.3% to 37.7%. Three chromosome segment substitution lines (CSSLs) of $BC_2F_6$ by backcross method were developed to transfer the QTLs into the susceptible cultivar Chucheong as a recurrent parent. A CSSL4-1 containing two QTLs qLB6.2 and qLB7 against blast races showed to the reaction of 6 to 7 at blast nursery in two regions for two years. The CSSL4-2 and CSSL93 containing QTLs, qLB11.2 and qLB12.1 of the resistance against leaf blast in blast nursery screening, respectively, had enhanced the resistance for blast nursery screening across two regions and in two years.

  • PDF