• Title/Summary/Keyword: RHYOLITIC TUFF

Search Result 41, Processing Time 0.023 seconds

A Study on Geology of Clay Mineral Deposits of Pohang-Ulsan Area and their Physico-Chemical Properties (포항-울산간의 점토자원의 지질과 그 물리화학적 특성에 관한 연구)

  • Kim, Ok Joon;Lee, Ha Young;Kim, Suh Woon;Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.4 no.4
    • /
    • pp.167-215
    • /
    • 1971
  • I. Purpose and Importance of the Study The purpose of the present study is to clarify to geological, mineralogical, and physico-chemical properties of the clay minerals deposits imbedded in the Tertiary sediments in the areas between. Pohang and Ulsan along southeastern coastal region of Korea. These clays are being mined and utilized for filter and insecticide after activation or simple pulverizing, nontheless activated clays are short coming as chemical industry in Korea has been rapidly grown in recent years. In spite of such increase in clay demand, no goological investigation on clay deposits nor physico-chemical properties of the clays have been carried out up to date. Consequently activated clays produced in Korea is not only of low grade but also of shortage in supply, so that Korea has to import activated clays of better grade. The importance of the present study lies, therefore, on that guiding principle could be laid down by knowing stratigraphical horizons, of clay deposits and fundamental data of improving grade of activated clays might be derived from the results of physico-chemical examinations. II. Contents and Scope of the study The contents of the study are pinpointed down in the following two subjects: 1) General geological investigation of Tertiary formations distributed in the areas between Pohang and UIsan, and detail geological study of the bentonitic clay deposits imbedded in them. 2) To clarifty physico-chemical characteristics of the clays by means of chemical analysis, X-ray diffraction and electron microscope. The scope of the study involves the following there points: i) Regional geological investigation-This investigation has been carried out in order to find out the distribution of Tertiary sediments and exact location of clay mineral deposits in the areas between Pohang and UIsan. ii) Detail geological investigation-This has been concentrated in and around the clay deposits which. had been found out by the regional investigation. iii) Laboratory researchs include i) age determination and correlation of Tertiary sediments by paleontological study, and ii) Chemical analysis, X-ray diffraction, and electron microscopic studies on clays, samples taken from various clay deposits. III. Research Results and Suggestions 1) The geology of the area investigated is composed mainly of Janggi and Beomgokri groups of Miocene age in ascending order rested on the upper Silla system, Balkuksa granite and volcanic rocks of upper Cretaceous age as base. 2) Janggi group is composed in ascending order of Janggi conglomerate, Nultaeri rhyolitic tuff, Keumkwangdong shale, two beds of lignite-bearing formations which consist of alternation of conglomerate, sandstone and mudstone, and andesitic, rhyolitic, and basaltic tuff beds. 3) Beomgokri group is mainly composed of andesitic to rhyolitic tuff interlayered by conglomerate and tuffaceous sandstone. In the areas around boundary between North-and South Kyeongsang-do is distributed Haseori farmation which is composed of conglomerate, sandstone, mudstone and andesitic to rhyolitic tuff, and which is correlated to Eoilri formation of Janggi group. 4) Clay deposits of the area are interbedded in Eoilri, Haseori, Nultaeri tuff, Keumkwangdong shale, upper and lower horizon of the lower lignite-bearing seam, and Keumori rhyolitic tuff formations of Janggi group; and are genetically classi.fied into four categories, that is, i) those derived from volcanic ash beds(Haseori and Daeanri deposits), ii) those of secondary residual type from rhyolitic tuff beds(Seokupri deposits), iii) Clay beds above and beneath the lignite seams, (Janggi and Keumkwangdong deposits), and iv) those derived from rhyolitic tuff beds(Sangjeong and Tonghae deposits). 5) Mineral constituents of clay deposits are, according to X-ray diffraction, montmorillonite accompanied in different degree by cristobalite, plagioclase, quartz, stilbite, and halloysite in rare occasion. The clays are grouped according to mineral composition into four types; i) those consist mostly of montmorillonite, ii) those composed of montmorillonite and cristobalite, iii) those composed of montmorillonite and plagioclase, and iv) those composed of montmorillonite, plagioclase and quartz. 6) Clays interbedded in Haseori formation and vicinity of lignite seams belong to the first type, are of good quality and derived either from volcanic ash bed, or primary clay beds near lignite seams. Clays belonged to other types are derived from weathering of rhyolitic tuff formations and their quality varies depending upon original composition and degree of weathering. Few clays in secondary residual type contain small amount of halloysite. 7) Judging from analytical data, content of silica($SiO_2$) varies proportionally with content of cristobalite, and alumina($Al_2O_3$) content does not vary with that of plagioclase, but increases in the sedimentary bedded type of deposits. 8) It is unknown whether or not these days could be upgraded by beneficiation since no grain size of these impurities nor beneficiation test had been studied. 9) Clay beds derived from valcanic ash layers or sedimentary layers at the vicinity of lignite seams are thin in thickness and of small, discontinueous lenticular shape, although they are of good quality; and those derived from rhyolitic tuff formations or residual type from tuff are irregular in both occurrence and quality. It is, therefore, not only very difficult but also meaningless to calculate its reserve, and reserve estimation, even if done, will greatly be deviated from practically minable one. Consequently, way of discovery and exploitation of clay deposits in the area under consideration is to check the geologically favorable areas whenever needed.

  • PDF

Gas and Fluid Inclusion Studies of the Granitic and Rhyolitic Rocks From the Bupyeong Silver Mine Area (부평 은광산 지역의 유문암질암과 화강암류의 가스 및 유체포유물 연구)

  • Kim, Kyu Han;Ha, Woo Young
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.519-529
    • /
    • 1997
  • Volcanic rocks including rhyolitic tuff, rhyolite and welded tuff in the Bupyeong silver mine area form a topographic circular structure which is interpreted as a resurgent caldera. Granitic rocks are emplaced inside and outside area of the circular structure. Pervasive silver mineralization took place in the rhyolitic rock of the southwestern margin of the caldera. Gas and fluid incluson studies were carried out to investigate the petrogenetic evolution and post-magmatic alteration for the rhyolitic and granitic rocks. Gas compositions are characterized by a low $CH_4/CO_2$ ratio (0.004-0.005) for rhyolitic and inside granitic rocks and a high $CH_4/CO_2$ ratio (0.01~0.29) for outside granitic rocks such as the Kimpo and Incheon granites. Homogenization temperature of solid daughter mineral bearing fluid inclusion (III and IV types) and two phase fluid inclusion (I and II types) for quartz in the Bupyeong granites range from 400 to $500^{\circ}C$ and 121 to $514^{\circ}C$, respectively. Salinties vary from 20 to 30 wt% NaCl for type III and IV inclusions and less than 20 wt % NaCl for type I and II inclusions. The fluid inclusion data shows a considerable influx of the meteoric water toward post magmatic alteration stage.

  • PDF

Genesis of Kaolin-Pyrophyllite Deposits in the Youngnam Area (영남지역 고령토-납석 광상의 성인 연구)

  • Sang, Ki-Nam
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.101-114
    • /
    • 1992
  • Occurrences of many kaolin-pyrophyllite deposits in the Youngnam area is related to the Late Cretaceous volcanic rocks, which are widely distributed through southern part from Tongnae-Yangsan to Miryang-Wolsung. The mode of occurrence and genesis of the kaolin-pyrophyllite deposits related to the volcanism was studied. This area is covered by andesitic rocks, rhyolite and rhyolitic welded tuff in ascending order. Lower most andesitic part is almost fresh. The altered rocks in the rhyolitic welded tuff can be classified into the following zones: silicified, pyrophyllite-kaolin, and argillic zone from the center part of ore deposit. The clay deposits occur as irregular massive, layer and funnel type about 5~20 m in width and is accompanied by thin diaspore bed outside of ore shoot. The clays chiefly consist of kaolinite, sericite, pyrophyllite, a little amount of diaspore, alunite, dumortierite, corundum and pyrite. The process of kaolinization-pyrophyllitization has a close relation to a local acidic hydrothermal solution originated from granitic rocks. Acidic hydothermal alteration occurrs mainly in the rhyolitic welded tuff. Initial solution containing $H_2S$ and others was oxidized near the surface and formed hydrothermal sulfuric acid solution.

  • PDF

Nd and Sr Isotopes and K-Ar Ages of the Granitic and Rhyolitic Rocks from the Bupyeong Silver Mine Area (부평 은광산 지역의 유문암질암의 화강암류의 K-Ar연령과 Nd, Sr 동위원소)

  • Kim, Kyu Han;Tanaka, Tsuyoshi;Nagao, Keisuke
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • Volcanic rocks including rhyolitic tuff, rhyolite and welded tuff in the Bupyeong silver mine area form a topographic circular structure known as a resurgent caldera. Granitic rocks are emplaced inside and outside area of the circular structure. K-Ar dating and Nd-Sr isotope studies were carried out to invesitigate the origin and petrogenetic evolution of the rhyolitic and granitic magma in the Bupeong silver mine area. Whole rock K-Ar age ranges from 208 to 131 Ma for rhyolitic rocks. Radiometric ages for the granitic rocks are 167.6 Ma for pink feldspar biotite granite from inside granitic pluton of the circular volcanic body, 178.8 Ma for the Kimpo hornblende biotite granite and 111.8 Ma for the Songdo foliated granite from outside granitic plutons of the volcanic body. The radiometric age data indicates that the volcanic activities which are partly overlapped by granite plutonic activities in the Bupyeong mine area had recorded early Jurassic and early Cretaceous in age. Initial Sr and Nd isotopic ratios of the rhyolitic rocks ($^{87}Sr/^{86}Sr$=0.710~0.719 and $^{143}Nd/^{144}Nd$=0.5115~0.5118) are similar to those of granitic rocks ($^{87}Sr/^{86}Sr$=0.709~0.716 and $^{143}Nd/^{144}Nd$=0.5115~0.5116) from inside granite stock. This means that similar source materials of felsic magma responsibles for the Bupyeong volcanic rocks and inside plutonic rocks. Based on the Nd and Sr isotopic compositions, rhyolitic and granitic magmas in the Bupyeong area originated from the partial melting of the old continental crust which has Nd model age ranging from 1500 to 2900 Ma. This is analogous to those of the other Jurassic granitoids in South Korea.

  • PDF

Magmatic evolution of igneous rocks related with the Samrangjin caldera, southeastern Korea (삼랑진 칼데라에 관련된 화성암류의 마그마 진화)

  • 황상구;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.161-176
    • /
    • 1998
  • There are exposed Samrangjin Tuff and intracaldera intrusions, of which rhyolitic rocks emplaced as postcollapsed central and ring intrusions within the Samrangjin caldera, and fine-grained granodiorite and biotite granite as regional tectonic intrusions nearby. The Samrangjin Tuff and the rhyolitic rocks are of a single Samrangjin magmatic system. Flow-banded rhyolite among rhyolitic rocks was emplaced in the outer part of the ring intrusions, rhyodacite in the inner part of the eastern ring, and porphyritic dacite and dacite porphyry in the inner part of the northwestern ring. Totally the Samrangjin Tuff and the rhyolitic rocks range from rhyolite to dacite in chemical composition. The Rb-Sr isotopic data of the Samrangjin Tuff and the rhyolitic rocks yield an age of $80.8{\pm}1.5(2{\sigma})$ Ma with the initial $^{87}Sr/^{86}Sr$ ratio of $0.70521{\pm}0.00010(2{\sigma})$. The continuous compositional zonations generally define a large stratified magma system in the postcollapse magma chamber. The Sr isotopic data suggest that the compositional zonations might have resulted from the fractional crystallization of a parental dacitic magma.

  • PDF

Mineralogy and Geochemistry of Jido kaolin deposits (지도 도석광상에 대한 광물학적 및 지구화학적 연구)

  • Park, Young Seog;Kim, Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.80-93
    • /
    • 1993
  • Jido kaolin deposits developed in the rhyolitic tuff of Cretaceous are located in the western part of Sinan-gun, Jeonranam-do. Jido kaolin deposits is predominantly composed of pyrophyllite, kaolinite and illite. On the basis of mineral assemblage Jido kaolin deposits can be divided into three alteraion zone from the center of alteration to the margin; kaolinite, kaolinite-pyrophyillite and pyrophyillite zones. Discriminant analysis show that $Al_2O_3$, $K_2O$, $Na_2O$, CaO of major elements are discriminant elements classifying kaolinite, kaolinite-pyrophyllite and pyrophyllite zones, while in case of trace elements Cr, Ni, Sc, Zn, and Zr are discriminant elements. Kaolin deposits has been formed by the hydrothermal alterations of the volcano rocks such as rhyolitic tuff and lapilli tuff, in late cretaceous. On the basis of the results of X-ray diffraction analysis, the deposits can be classified into three types of minerals assemblages; kaolinite, kaolinite-pyrophyllite and pyrophyllite zones. All the assemblages contain quartz and muscovite, but the kaolinite zone contains kaolinite, illite and chlorite, the kaolinite-pyrophyllite zone contains kaolinite, pyrophyllite and the pyrophyllite zone contains illite and pyrite.

  • PDF

A Study on Genesis of Alunite Deposits of Jeonnam Area (전남지역(全南地域) 명반석광상(明礬石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Moon, He Soo
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.183-201
    • /
    • 1975
  • The south and southwestern parts of Jeonra-namdo has been known as an alunite province in Korea. The alunite deposits investigated for the present study are Okmaisan, Seongsam, Bugog, Gasado south, Gasado north, Jangsando, Dogcheon and Jungyongri deposits. The main purpose of this study is to depict the genetical origin of the alunite deposits. The rocks distributed in the areas mentioned above consist chiefly of rhyolitic tuff, breccia tuff and andesitic tuff of Cretaceous age which represent different episodes of volcanic activities during Cretaceous epoch. The attitude of bedding of the tuffaceous rocks varies from place to place but generally dips very gently. The alunite deposits are embedded mostly in the rhyolitic tuff so that they appear as layered deposits, this occurrence may be the result of stratigraphic and lithologic controls. The result of this study can be summarized as below. The mineral sequence studied by the mineral paragenesis and the result of the spectrograph anlyses is such that (1) alunite was formed at first and pyrophyllite was nearly contemporaneous with alunite but pyrophyllite formation can be recognized as a secondary mineralization products, (2) kaoline was succeeded to form later and hematite finally deposited, and (3) pyrite was deposited from the begining to the end of the above mineralization period. The compositional change of host rocks is such that CaO, $SiO_2$ and $Na_2O$ were largely removed from the parent rocks and some $Al_2O_3$ and $SO_3$ were transported by the solution so as to enrich the rocks. The sequencial process of such mineralization has resulted in forming those distinguish mineral zones; alunite, kaoline, pyrophyllite, silicifide and sulphide zone which manifest irregular shape. These deposits were formed by hydrothermal solution which was possibly low temperature and contained sulphuric acid originated from $H_2S$ and $SO_2$ gases.

  • PDF

K-Ar whole Rock Ages of the Rhyolitic Rocks at Punggog in the Jangseong Sheet, Taebaegsan Area (태백산지역(太白山地域) 장성도복내(長省圖福內) 풍곡(豊谷)에 분포(分布)되어 있는 유문암질암(流紋岩質岩)의 K-Ar 전암연령(全岩年齡))

  • Jin, Myung-Shik;Kim, Sahng-Yup;Seo, Hyo-Joon;Kim, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.17-20
    • /
    • 1989
  • Two rhyolitic rocks were taken at punggog of the Jangseong sheet in the Taebaegsan mineralized area and isotopically dated by K-Ar whole rock method. One is a rhyolite which gives $62.69{\pm}1.15Ma$ and the other is a rhyolitic tuff which gives $51.67{\pm}6.64Ma$, respectively. Generally K-Ar whole rock ages of the volcanic rocks can be assumed to be the formation age of them, if there is no geological criterion of secondary effects. But the two rhyolitic rocks were slightly hydrothermally altered and the age the rhyolitic tuff is a little younger than that of the rhyolite. However, there is no geological criterion to show any big hiatus between them in field, yet. Therefore, the age data would be interpreted, as that the rhyolitic rock mass has been probably extruded at about 60 Ma, a little older than 60 Ma, in the area. The ages of them probably appear to be secondary ages after the alteration. This fact well coincides with the K-Ar whole rock age of quartz-porphyry ($57.25{\pm}0.89Ma$) distributed near the 1st Yeonhwa Pb-Zn mine (Park et al., personal comm.), because the quartz-porphyry look to be a product of hydrothermal alteration of the volcanic rock.

  • PDF

Petrology of the Cretaceous Igneous Rocks in the Mt. Baegyang Area, Busan (부산 백양산 지역의 백악기 화산-심성암류에 대한 암석학적 연구)

  • 김향수;고정선;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.32-52
    • /
    • 2003
  • The Mt. Baegyang in Busan, composed of sedimentary basement rocks (Icheonri Formation), andesite (lava), andesitic pyroclastic rocks, fallout tuff and tuffaceous sedimentary rocks, rhyolitic pyroclastic rocks, intrusive rocks (granite-porphyry, felsite, and biotite-granite) of Cretaceous age in ascending order. The volcanic rocks show a section of composite volcano which comprised alternation of andesitic lava and pyroclasitc rocks, rhyolitic pyrocalstic rocks (tuff breccia, lapilli tuff, fine tuff) from the lower to the upper strata. From the major element chemical analysis, the volcanic and intrusive rocks belong to calc-alkaline rock series. The trace element composition and REE patterns of volcanic and plutonic rocks, which are characterized by a high LILE/HFSE ratio and enrichments in LREE, suggest that they are typical of continental margin arc calc-alkaline rocks produced in the subduction environment. Primary basaltic magma might have been derived from partial melting of mantle wedge in the upper mantle under destructive plate margin. Crystallization differentiation of the basaltic magma would have produced the calc-alkaline andesitic magma. And the felsic rhyolitic magma seems to have been evolved from andesitic magma with crystallization differentiation of plagioclase, pyroxene, and hornblende.

Petrology of the Cretaceous Volcanic Rocks in Yeongdo island, Busan (부산 영도 일대의 백악기 화산암류에 대한 암석학적 연구)

  • Kim, Dohyoung;Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.293-311
    • /
    • 2021
  • The volcanic rocks that make up Yeongdo island, an administrative district located on the southern coast of Busan, are composed of andesitic and rhyolitic rocks. Andesitic rock is mainly composed of volcanic breccia has a phenorysts of plagioclase and contains rock fragments. The rhyolitic rock is composed of volcanic angular rock at the base of Mt. Bongnae, and welded tuff forms the main mass of Mt. Bongnae. The fiamme structure can be easily observed with the naked eye, and the higher the altitude, the weaker the welded structure develops and the less the amount of rock fragments and crystals constituting the welded tuff. It is indicated that the magma that formed this study area is related to the tectonic environment of the continental margin related to subduction, and that it erupted after undergoing fractional cystallization at the same time with some contaminant in the continental crust. As a result of analyzing the main elements by altitude, it is believed to be the result of mixing at least 4 times or more of magma batches.