• Title/Summary/Keyword: RGR

Search Result 110, Processing Time 0.035 seconds

Effects of varying CO2, Nutrient and Light Irradiance Levels on the Growth of Ulva australis at Germling, Juvenile, and Adult Stages (해수의 CO2와 영양염 농도 및 조도가 구멍갈파래(Ulva australis) 배아, 유엽과 성체의 생장에 미치는 영향)

  • Jeon, Da Vine;Na, Yeon Ju;Yu, Ok Hwan;Choi, Han Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.96-103
    • /
    • 2015
  • The effects of $CO_2$ concentration, nutrient levels, and irradiance on the growth of germlings and juveniles, and on the photosynthesis of adults were examined in a green tide alga, Ulva australis. We used a factorial experimental design with two $CO_2$ concentrations (380 and 750 ppm), two nutrient levels (control and PES medium), and two irradiance levels (50 and $100{\mu}mol$ photons $m^{-2}s^{-1}$). Germlings grew best ($664.15{\pm}61.45{\mu}m$ in length) under conditions of 750 ppm, PES, and $100{\mu}mol$ photons $m^{-2}s^{-1}$ after 10 days in culture. Relative growth rates (RGR) of the juveniles were greatest (4.41% $day^{-1}$) under conditions of 750 ppm, PES, and $50{\mu}mol$ photons $m^{-2}s^{-1}$ after 5 days in culture. Photosynthetic efficiency ($F_v/F_m$) of the adult discs was $0.73{\pm}0.05$ before the experiment and reached a maximum ($0.83{\pm}0.01$) under conditions of 750 ppm, control, and $50{\mu}mol$ photons $m^{-2}s^{-1}$ after 5 days in culture. Growth (germlings and juveniles) and photosynthesis (adult discs) of Ulva australis increased when $CO_2$ levels were 750 ppm. Additionally, the optimal irradiance for growth and photosynthesis differed among stages, wherein germlings grew best at $100{\mu}mol$ photons $m^{-2}s^{-1}$, juveniles grew best at $50{\mu}mol$ photons $m^{-2}s^{-1}$, and adults photosynthesized most at $50{\mu}mol$ photons $m^{-2}s^{-1}$. The performance of Ulva australis at all examined life stages was enhanced under the PES nutrient treatment. In conclusion, the physiological responses of U. australis to varying $CO_2$, nutrient, and irradiance levels differed slightly among life stages. However, growth and photosynthesis always increased with elevated $CO_2$ and nutrient concentrations. These results indicate that U. australis green tide blooms might occur more frequently in coastal areas if $CO_2$ and nutrient concentrations increase.

Relationship between Nodulating Characters and Yield Components in Supernodulating Soybean Mutants

  • Park Sei Joon;Youn Jong Tag;Kim Wook Han;Lee Jae Eun;Kwon Young Up;Shin Jin Chul;Seong Rak Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.5-10
    • /
    • 2005
  • This experiment was conducted to clarify the functions of supernodulating characters on seed yield determination through the comparison of agricultural traits of supernodulating soybean mutants, Sakukei4, SS2-2, and their parent cultivars, Enrei and Shinpaldalkong2. The plant dry weights of supernodulating mutants, Sakukei4 and SS2-2, were $52\%$ and $61\%$ of their wild type parents at full seed stage (R6). However, the relative growth rate (RGR) from the pod set stage (R3) to R6 of Sakukei4 was 0.022 g/g/day and that of SS2-2 was 0.016 g/g/day, which were higher than those of their parents. Nodule number and dry weight were increased in two supernodulating mutants by the R6 stage. The nitrogen concentrations of leaf, petiole and stem of Sakukei4 were higher than those of Enrei. SS2-2 showed higher nitrogen concentration in petiole than Shinpaldalkong2 had. The positive correlations were appeared between nodule dry weight, plant dry weight and pod number, in two supernodulating mutants during the period from R3 to R6 stage. Although all of the yield components and seed yield were lower in two supernodulating mutants than their parents at the stage of full maturity (R8), the harvest index was higher in supernodulating mutants. The increasing rates of pod number to stem dry weight in two supernodulating mutants showed the higher than those of two their parents at R8 stage. In conclusion, the relative growth rates during the early to the middle reproductive growth period were higher in supernodulating mutants than the wild types. This could be resulted in an increase in pod number. The increase of relative growth rate was the result of the successive supplement of nitrogen source from biological nitrogen fixation (BNF) of nodules during the middle reproductive growth period in supernodulating mutants.

Genotypic Variation of Rapid Canopy Closure and Its Relationship with Yield of Rice (벼 조기초관폐쇄성의 품종 변이 및 수량과의 관계)

  • Fu, Jin-Dong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • Rapid canopy closure (RCC) is one of the physiological attributes that may enhance genetic yield potential of rice (Oryza sativa L.) in a growing season. Crop growth before canopy closure could be described by an exponential equation of $y\;=\;{\alpha}{\cdot}{\exp}({\beta}{\cdot}t)$ where $\alpha$ is the crop leaf area index (LAI) or shoot dry weight (DW), t is the thermal time, $\beta$ is the LAI or DW at the beginning of the exponential growth and is the relative growth rate of LAI ($m^2m^{-2}^{\circ}C^{-1}$) or DW($gg^{-2}^{\circ}C^{-1}$). Field experiment using 22 cultivars revealed that the exponential growth phase before canopy closure can be divided into two sections; an earlier section during which crop dry weight and LAI of varieties are highly dependent on $\alpha$ and a second section where crop dry weight and LAI are highly dependent on $\beta$. Grain weight had significantly positive correlation with $\alpha$ parameter and dry weight and LAI during early exponential phase. The parameter $\beta$ of the exponential growth curve had positive and significant correlation with the LAI and dry weight during the late exponential growth phase, grain number per unit area, and grain yield. There was genotypic difference for RCC parameters, $\alpha$ and $\beta$, indicating the possibility of genetic improvement for these traits.

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.

Growth Analysis of Silage Corn in Response to Seeding Time (파종기 이동에 따른 Silage 옥수수의 생장해석)

  • 강정훈;이호진;박병훈
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.3
    • /
    • pp.212-219
    • /
    • 1985
  • The field experiment was conducted to study on the growth analysis of early variety, MTC-1, and late variety, Suweon 19, in response to seeding time at Suweon. The results summarized as follows: 1. Days required for Leaf-Formation(L-phase) of MTC-1 and Suweon 19 was same but that of Node-Thickening(N-phase) was quite different, e.g. late variety has two times longer. The period of Ear-Development (E-phase) in MTC-1 was 41 days and 53 days in Suweon 19. L-and N-phase were shortened by late seeding but E-phase was not influenced by seeding time. 2. Leaf Area Index(LAI) was decreased and Leaf Area Ratio(LAR) was increased by late seeding. Days required to maximum LAR was less by late seeding. Net Assimilation Rate(NAR) of L-, N-, and E-phase was decreased but its tendency in E-phase was remarkable at late seeding. 3. Crop Growth Rate(CGR) was increased gradually in the process of plant growth and it was the highest at Husk-stage. Relative Growth Rate(RGR) was increased in L-phase and was decreased in N- and E-phase, but its tendency in N-phase was great. 4. The period required to the maximum dry matter yield was shortened by late seeding and dry matter yield was increased by early seeding.

  • PDF

The Graft-take and Growth of Grafted Peppers (Capsicum annuum L.) Affected by Temperature, Relative Humidity, and Light Conditions During Healing and Acclimatization (접목활착 기간 중 온도.상대습도 및 광조건이 고추 접목묘의 활착 및 생육에 미치는 영향)

  • Jang, Yoon-Ah;Moon, Ji-Hye;Lee, Ji-Weon;Kim, Seung-Yu;Chun, Chang-Hoo
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.385-392
    • /
    • 2009
  • This study was performed to evaluate the influence of temperature, relative humidity, and light conditions during healing and acclimatization on the graft-take and growth of grafted peppers (Capsicum annuum L.), in order to propose optimum environmental conditions for the healing and acclimatization of grafted peppers. The healing and acclimatization period was for six days and was divided into three stages (Stage I, II and III), of which each period was two days. Grafted peppers were healed under the condition of 30 and 95% relative humidity (RH) during Stage I. During Stage II and III, grafted peppers were healed and acclimatized under different temperatures ($20^{\circ}C$, $25^{\circ}C$, or $30^{\circ}C$) and RH conditions (75%, 85% or 95%). The growth of grafted peppers was greater under lower temperature and lower relative humidity conditions. The graft-take just after the end of healing and acclimatization was greater grafted peppers under high RH condition. However, the graft-take of peppers which were healed and acclimatized under $30^{\circ}C$ and RH 95%, dropped by about 10 percent on day seven after healing and acclimatization. And also, grafted peppers were healed and acclimatized under the different temperatures ($25^{\circ}C$ or $30^{\circ}C$), RH conditions (65%, 75% or 85%), and light condition (dark or light). Lower RH (to 65%) and light condition at $25^{\circ}C$ during healing and acclimatization promoted the graft-take and growth of grafted peppers.

Effect of seeding date on growth , dry matter accumulation and chemical composition of sorghum , sudangrass and sorghum-sudangrass Hybrid (파종기 이동이 수수 , 수단그라스 및 수수$\times$수단그라스 교잡종의 생육 , 건물축적 및 성분 함량에 미치는 영향)

  • 한흥전;안수봉
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.62-72
    • /
    • 1985
  • In order to find out the effects of seeding time on growth, dry matter production and nutritive content of Pioneer 931, Pioneer 988 and Piper, this study was carried out on the experimental field of Livestock Experiment Station in 1981-83. Seeding time were 7 with 14-day interval from April 16 to July 9. The results are summarized as follows: 1. It tool about 12 to 13 days from seeding to emergence in case of Mid-April seeding and 7 to 8 days in Late-June. Earlier seeding, more longer growth period from emergence to heading they required. 2. Plant height of Pioneer 931 seeded lately was longer than 4.5 meters in primary growth and Sudangrass was about 2.0 to 2.5 meters. Leaf area was the greatest in Mid-August by early seeding but it was increased until Early-October by late seeding. 3. Sorghum gas brought the highest yield in dry mater and Sudangrass the lowest. In general dry matter yield reduced gradually in response to later seeding but Pioneer 931 has brought more than 10 tons per hecter until Late-June. 4. Relative Growth Rate, Leaf Area Ratio and Leaf Weight of all varieties decreased in accordance with growth development. 5. Crude protein content of leaf was higher than stem and the younger the plants, the more protein they contain. Nitrogen Free Extract was just opposite to crude protein.

  • PDF

Comparison of the High Concentration Calcium Chloride(CaCl2) Salt Reduction Effect of Soil Amendment Agent and Planting Pennisetum alopecuroides (토양개량제와 수크령 식재에 따른 고농도 염화칼슘 염분저감 효과 비교)

  • Yang, Ji;Park, Jae-Hyeon;Yoon, Yong-Han;Ju, Jin-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.345-354
    • /
    • 2020
  • The purpose of this study was to investigate the effects of soil amendment treatments, such as hydroball, and active carbon, and planting Pennisetum alopecuroides for reducing calcium chloride (CaCl2) of soil leachate and the growth of Pennisetum alopecuroides. The experiment planted Pennisetum alopecuroides in a plastic pot with a diameter of 10 cm and a height of 9 cm in a greenhouse April-October 2018. The experimental group comprised six treatments, including Non-treatment (Cont.), Hydroball (H), Active carbon (AC), planting Pennisetum alopecuroides (P), hydroball + planting Pennisetum alopecuroides (H + P), and active carbon + planting Pennisetum alopecuroides (AC + P). The dissolution of the CaCl2 concentration 200ml of 10g/L was irrigated once every two weeks. We measured the growth (plant height, leaf length, leaf width, number of leaves), EC, pH, and exchangeable cations (K+, Ca2+, Na+, and Mg2+) according to the high concentration of CaCl2 in the plant and soil leachate. In a treatment with the 'hydroball' amendment, the soil leachate electrical conductivity (EC), and the cation exchangeable were decreased more than those of the control, while the growth of Pennisetum alopecuroides relative growth rate(RGR) increased. Overall, application with the hydroball amendment added the planting of Pennisetum alopecuroides improved the salt reduction effect more than the control group. These results indicate that the application of the soil amendment agent hydroball was suitable soil amendments in accordance with the high concentration of calcium chloride (CaCl2). Also, Planting Pennisetum alopecuroides is expected to be appropriate for salt-tolerant plant for soil affected by deicing salt agents.

Growth Characteristics of Cucumber Scion and Pumpkin Rootstock under Different Levels of Light Intensity and Plug Cell Size under an Artificial Lighting Condition (인공광형 폐쇄형 육묘시스템 내 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박대목의 생육특성)

  • Jang, Yoonah;Lee, Hye Jin;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • This study was conducted to investigate the growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity (photosynthetic photon flux, PPF) and plug cell size in a closed transplant production system with artificial lighting. Cucumber scion and pumpkin rootstock seedlings were grown under the combinations of three levels of PPF (PPF 165, 248, and $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and five types of plug tray (50, 72, 105, 128, and 200 cells in the tray) for nine days. The shoot dry weight and relative growth rate increased with increasing PPF and plug cell size. As PPF increased, cucumber scion and pumpkin rootstock seedlings had higher dry matter, lower specific leaf area, and lower hypocotyl length. The first true leaf of cucumber scion and pumpkin rootstock unfolded at eight and seven days after sowing, respectively, except the treatment using 200-cell plug tray. The unfolding of first true leaf of seedlings grown in 200-cell plug tray was delayed by one day. Accordingly, it was considered that the use of small cell size such as 200-cell plug tray would require more time for the production of scion and rootstock. Based on the results, we suggest that cucumber scion and pumpkin rootstock be grown in 105-cell to 128-cell plug tray for eight days and 72-cell to 105-cell plug tray for seven days, respectively, when using splice grafting method with root-removed rootstock. Additionally, higher PPF is suggested to improve the growth and quality of scion and rootstock.

Effect of Root-Zone Temperature in Hydroponics on Plant Growth and Nutrient Uptake in Vegetable Crops (수경재배(水耕栽培)에서 양액온도(養液溫度)가 채소작물(菜蔬作物)의 생장(生長) 및 무기양분흡수(無機養分吸收)에 미치는 영향(影響))

  • Jang, Byoung-Choon;Hong, Young-Pyo;Chun, Jae-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.242-248
    • /
    • 1992
  • This study was carried out to investigate the effects of root-zone temperature in hydroponics on the plant growth and nutrient uptake of lettuce(Lactuca sativa L), tomato (Lycopersicon esculentum Mill), and cucumber (Cucumis sativus L). Respiration rate in roots increased with increase in root-zone temperature. At $10^{\circ}C$ of root-zone temperature, respiration rate in lettuce root was higher than those in tomato and cucumber. Increasing rate of root respiration in tomato with increase in root-zone temperature was greater than those in lettuce and cucumber. The lowest dry weight and leaf area of the crops studied were obtained at $10^{\circ}C$ of root-zone temperature, but they were not different between 20 and $30^{\circ}C$. Increase in root-zone temperature generally resulted in increase in T/R ratio and net assimilation rate. At the low root-zone temperature, root growth and leaf area of tomato and cucumber were severely affected. Relative growth rates of lettuce and cucumber were also greatly reduced by the low root-zone temperature. Contents of N, P, K, Ca, and Mg in the crops increased as root-zone temperature increased from 10 to $20^{\circ}C$, whereas only Ca content in tomato and cucumber increased with increase in root-zone temperature to $30^{\circ}C$. Remarkably low contents of P and Mg in the crops were found at the low root-zone temperature. Inhibition of plant growth and nutrient uptake due to low root-zone temperature was much greater in cucumber than in lettuce and tomato.

  • PDF