• Title/Summary/Keyword: RGO

Search Result 71, Processing Time 0.023 seconds

Easy Preparation of Nanosilver-Decorated Graphene Using Silver Carbamate by Microwave Irradiation and Their Properties

  • Yun, Sang-Woo;Cha, Jae-Ryung;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2251-2256
    • /
    • 2014
  • We have successfully decorated reduced graphene oxide (RGO) with silver nanoparticles (AgNPs) by microwaving silver alkylcarbamate for 13 seconds using 1-amino-4-methylpiperazine. Uniform AgNPs (20-40 nm) were effectively prepared, and 1-amino-4-methylpiperazine acted as a reaction medium, reducing agent, and stabilizer. Particle size and morphology were correlated with the silver alkylcarbamate concentration and microwave time. The graphene/AgNPs composites were characterized by Raman, X-ray diffraction, and scanning electron microscopy to confirm that the AgNPs were uniformly decorated onto the graphene. Measurements of the transparent conductive property at room temperature indicated that these graphene/AgNPs nanosheets with 55.45% transmittance were electrically continuous with a sheet resistance of approximately $43{\Omega}/{\Box}$.

Pseudocapacitive Behavior of Lignin Nanocrystals Hybridized onto Reduced Graphene Oxide for Renewable Energy Storage Material

  • Kim, Yun Ki;Park, Ho Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.488.1-488.1
    • /
    • 2014
  • As the society demands the high performance energy storage devices, development of efficient and renewable energy storage materials has been a topic of interest. Here, we report pseudocapacitive behaviors of biopolymer (lignin) that was confined onto reduced graphene oxides (RGOs) for a renewable energy storage system. The strong surface confinement of quinone groups onto the electroconductive RGOs created the renewable hybrid electrodes for supercapacitors (SCs) with fast and reversible redox charge transfer. As a result, the pseudocapacitors fabricated with the hybrid electrodes of lignin and RGO presented the outstanding electrochemical performances of remarkable rate and cyclic performances:~4% capacitance drop after 3000 cycles and a maximum capacitance of 432 F g-1.

  • PDF

Sensing performances of Semiconducting Carbon Nanomaterials based Gas Sensors Operating at Room Temperature (반도체 탄소 나노재료 기반 상온 동작용 가스센서)

  • Choi, Sun-Woo
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.96-106
    • /
    • 2019
  • Semiconducting carbon-based nanomaterials including single-walled carbon nanotubes(SWCNTs), multi-walled CNT(MWCNTs), graphene(GR), graphene oxide(GO), and reduced graphene oxide(RGO), are very promising sensing materials due to their large surface area, high conductivity, and ability to operate at room temperature. Despite of these advantages, the semiconducting carbon-based nanomaterials intrinsically possess crucial disadvantages compared with semiconducting metal oxide nanomaterials, such as relatively low gas response, irreversible recovery, and poor selectivity. Therefore, in this paper, we introduce a variety of strategies to overcome these disadvantages and investigate principle parameters to improve gas sensing performances.

Effects of the Degree of GO Reduction on PC-GO Chemical Reactions and Physical Properties (그래핀 옥사이드(GO)의 환원정도가 PC-GO 화학반응 및 물성에 미치는 영향)

  • Park, Ju Young;Shin, Jin Hwan;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • Polycarbonate (PC)/graphene oxide (GO) composites with 3 phr of GO were prepared by using a twin screw extruder at 240, 260, and $280^{\circ}C$ after mixing the solution with chloroform. It was confirmed by DSC and TGA that the glass transition temperature ($T_g$) of PC/GO composites were not changed and the thermal stability was the best in case of the extrusion temperature at $260^{\circ}C$. Thermo mechanical properties of PC/GO composites according to extrusion temperatures were measured by dynamic mechanical analysis (DMA). Storage moduli of PC/GO composites were higher than that of pure PC and there was no detectable changes at varying the extrusion temperature. Based on these results, the extrusion temperature of PC/GO composites was fixed at $260^{\circ}C$. The degree of the chemical reaction of PC/GO composites with respect to the GO reduction time was confirmed by the C-H stretching peak at $3000cm^{-1}$ and the degree of the chemical reaction was similar to that of GO when the reduction time was 1 h. A decrease in the complex viscosity as a function of the GO reduction time was detected by dynamic rheometer, which may be originated from the enhancement of GO dispersion by PC-GO reaction. The GO dispersion was confirmed by scanning electron microscope (SEM).

Synthesis of High-Quality Monolayer Graphene on Copper foil by Chemical Vapor Deposition

  • Lee, Su-Il;Kim, Yu-Seok;Song, U-Seok;Jo, Ju-Mi;Kim, Seong-Hwan;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.351-352
    • /
    • 2011
  • 그래핀(Graphene)은 2차원 평면구조의 $sp^2$ 탄소 결합으로 이루어진 물질이다. 일반적으로 그래핀은 탄소 원자 한층 정도의 얇은 두께를 가지면서 강철의 100배 이상 높은 강도, 다이아몬드보다 2배 이상 뛰어난 열 전도성, 그리고 규소보다 100배 이상 빠른 전자이동도 등의 매우 우수한 특성을 지닌다. 그래핀을 합성하거나 얻는 방법에는, 기계적 박리법(Micro mechanical exfoliation), 산화흑연(graphite oxide)을 이용한 reduced graphene oxide(RGO)방법과 탄화 규소(SiC)를 이용한 epitaxial growth 방법 등이 있지만, 대 면적화가 어렵거나 구조적 결함이 큰 문제점이 있다. 반면, 탄화수소(hydrocarbon)를 탄소 공급원으로 하는 열화학 기상 증착법(Thermal chemical vapor deposition, TCVD)은 구조적 결함이 상대적으로 적으면서 대 면적화가 가능하다는 이점 때문에 최근 가장 많이 이용되고 있는 방법이다. TCVD를 이용, 니켈, 몰리브덴, 금, 코발트 등의 금속에서 그래핀 합성연구가 보고되었지만, 대부분 수 층(fewlayer)의 그래핀이 합성되었다. 하지만, 구리 촉매를 이용하는 것이 단층 그래핀 합성에 매우 효율적이라는 연구결과가 보고되었다. 구리의 경우, 낮은 탄소융해도(solubility of carbon) 때문에 표면에서 self limiting 과정을 통하여 단층 그래핀이 합성된다. 그러나 단층 그래핀 일지라도 면저항(sheet resistance)이 매우 높고, 이론적 계산값에 비해 전자이동도(electron mobility)가 낮게 측정된다. 이러한 원인은 구조적 결함에서 기인된 것으로써 산업으로의 응용을 어렵게 만들기 때문에 양질의 단층 그래핀 합성연구는 필수적이다[1,2]. 본 연구에서는 TCVD를 이용하여 구리 포일(25 ${\mu}m$, Alfa Aeser) 위에 메탄가스를 탄소공급원으로 하여 수소를 함께 주입하고, 메탄가스의 양과 합성시간, 열처리 시간을 조절하면서 균일한 단층 그래핀을 합성하였다. 합성된 그래핀을 $SiO_2$ (300 nm)기판위에 전사(transfer)후 라만 분광법(raman spectroscopy)과 광학 현미경(optical microscope)을 통하여 분석하였다. 그 결과, 열처리 시간이 증가할수록 촉매로 사용된 구리 포일의 grain size가 커짐을 확인하였으며, 구리 포일 위에 합성된 그래핀의 grain size는, 구리 포일의 grain size에 의존하여 커짐을 확인하였다. 또한 동일한 grain 내의 그래핀은 균일한 층으로 합성되었다. 이는 기계적 박리법, RGO 방법, epitaxial growth 방법으로 얻은 그래핀과 비교하여 매우 뛰어난 결정성을 지님이 확인되었다. 본 연구를 통하여 면적이 넓으면서도 결정성이 매우 뛰어난 양질의 단층 그래핀 합성 방법을 확립하였다.

  • PDF

Comparative Analysis of Accuracy between Computerized Tomography and Cephalogram for 3-Dimensional Measurement of Maxillofacial Structure (악안면 3차원 계측시 컴퓨터 단층촬영과 두부 방사선 규격사진의 정확성 비교 분석)

  • Paek, Jong-Su;Song, Jae-Chul;Lee, Hee-Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.123-137
    • /
    • 2001
  • Background: The purpose of this study is to evaluate the accuracy of measurements obtained from 3-dimensional computerized tomography and 3-dimensional cephalogram constructed by using the frontal and lateral cephalogram of six human dry skulls. Materials and Methods: After CT scans and each cephalograms were taken, 3-dimensional coordinates (X, Y, Z) of landmarks were obtained using computer programs. In this study, the accuracy of both methods were determined by means of 14 linear measurements compare with caliper measurements. Results: The standard deviation of landmarks of 3-dimensional CT and 3-dimensional cephalogram were 0.23 mm, and 0.30 mm in X axis, 0.27 mm and 0.25 mm in Y axis, and 0.27 mm and 0.31 mm in Z axis. In both methods, the standard deviation were less than 0.5 mm in all landmarks, and the most of landmarks showed less than 1 mm in range. Concerning the accuracy, the mean difference between 3-dimensional CT and manual measurements was 0.33 mm, and 1.13 mm between 3-dimensional cephalogram and manual measurements. The distance between RGo and LGo showed the largest difference (2.03 mm). There were highly significant, and large correlation with manual measurements in both methods (p<0.01). Conclusion: It is concluded that closeness of repeated measures to each skulls reveal the precision of both methods. Computerized tomography and cephalogram for 3-dimensional measurement of maxillofacial structure are equivalent in quality to caliper measurements.

  • PDF

Modified Glassy Carbon Electrode with Polypyrrole Nanocomposite for the Simultaneous Determination of Ascorbic acid, Dopamine, Uric acid, and Folic Acid

  • Ghanbari, Khadijeh;Bonyadi, Sepideh
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.68-83
    • /
    • 2020
  • A fast and simple method for synthesis of CuxO-ZnO/PPy/RGO nanocomposite by electrochemical manner have been reported in this paper. For testing the utility of this nanocomposite we modified a GCE with the nanocomposite to yield a sensor for simultaneous determination of four analytes namely ascorbic acid (AA), dopamine (DA), uric acid (UA), and folic acid (FA). Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) selected for the study. The modified electrode cause to enhance electron transfer rate so overcome to overlapping their peaks and consequently having the ability to the simultaneous determination of AA, DA, UA, and FA. To synthesis confirmation of the nanocomposite, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) were applied. The linearity ranges were 0.07-485 μM, 0.05-430 μM, 0.02-250 μM and 0.022-180 μM for AA, DA, UA, and FA respectively and the detection limits were 22 nM, 10 nM, 5 nM and 6 nM for AA, DA, UA, and FA respectively Also, the obtained electrode can be used for the determination of the AA, DA, UA, and FA in human blood, and human urine real samples.

Study of a New Reciprocating Gait Orthosis for a Spinal Cord Injury Patient (척수마비환자 재활훈련용 왕복보행보조기에 관한 연구)

  • Kim, Myung-Hoe
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.1
    • /
    • pp.81-88
    • /
    • 2002
  • This paper presents a design and a control of a New Reciprocating Gait Orthosis and dynamic walking simulation for this system. The New Reciprocating Gait Orthosis is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a New Reciprocating Gait Orthosis depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the New Reciprocating Gait Orthosis. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal card injury patients are able to train effectively with a Reciprocating Gait Orthosis. The New Reciprocating Gait Orthosis was able to keep smooth walling by the orthotic servo motors and hybrid system, make a sequence of flexion and extension of the joint during the walking. Also, the New Reciprocating Gait Orthosis turned out to be a satisfactory orthosis for walling training, for the spinal cord injury patient.

  • PDF

Self Charging Sulfanilic Acid Azocromotrop/Reduced Graphene Oxide Decorated Nickel Oxide/Iron Oxide Solar Supercapacitor for Energy Storage Application

  • Saha, Sanjit;Jana, Milan;Samanta, Pranab;Murmu, Naresh Chandra;Lee, Joong Hee;Kuila, Tapas
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.179-185
    • /
    • 2016
  • A self-charging supercapacitor is constructed through simple integration of the energy storage and photo exited materials at the photo electrode. The large band gap of $NiO/Fe_3O_4$ heterostructure generates photo electron at the photo electrode and store the charges through redox mechanism at the counter electrode. Sulfanilic acid azocromotrop/reduced graphene oxide layer at the photo electrode trapped the photo generated hole and store the charge by forming double layer. The solar supercapacitor device is charged within 400 s up to 0.5 V and exhibited a high specific capacitance of ~908 F/g against 1.5 A/g load. The solar illuminated supercapacitor shows a high energy and power density of 33.4 Wh/kg and 385 W/kg along with a very low relaxation time of ~15 ms ensuring the utility of the self charging device in the various field of energy storage and optoelectronic application.

Metallocene Catalysts on Carbon-based Nano-materials

  • Choi, Baek-Hap;Lee, Jun-O;Lee, Seung-Jun;Ko, Jae-Hyeon;Lee, Kyoung-Seok;Oh, Jung-Hoon;Kim, Yong-Hyun;Choi, In-Sung S.;Park, Sung-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.556-556
    • /
    • 2012
  • Transition metal-based organometallic complexes have shown great talents as a catalyst in various reactions. Designing organic molecules and coordinating them to such active centers have been a promising route to control the catalytic natures. Metallocene, which has transition metal atoms sandwiched by aromatic rings, is one of the representative systems for organometallic catalysts. Group 4-based metallocene catalysts have been most commonly used for the production of polyolefins, which have great world-wide markets in the real life. Graphenes and carbon nanotubes (CNTs) were composed of extended $sp^2$ carbon networks, showing high electron mobility as well as have extremely large steric bulkiness relative to metal centers. We were inspired by these characteristics of such carbon-based nano-materials and assumed that they could intimately interact with active centers of metallocene catalysts. We examined this hypothesis and, recently, reported that CNTs dramatically changed catalytic natures of group 4-based catalysts when they formed hybrid systems with such catalysts. In conclusion, we produced hybrid materials composed of group-4 based metallocenes, $Cp_2ZrCl_2$ and $Cp_2TiCl_2$, and carbon-based nano-materials such as RGO and MWCNT. Such hybrids were generated via simple adsorption between Cp rings of metallocenes and graphitic surfaces of graphene/CNT. The hybrids showed interesting catalytic behaviors for ethylene polymerizations. Resulting PEs had significantly increased Mw relative to those produced from free metallocene-based catalytic systems, which are not adsorbed on carbon-based nano-materials. UHMWPEs with extremely high Mw were obtained at low Tp.

  • PDF