• Title/Summary/Keyword: RGB-D images

Search Result 109, Processing Time 0.027 seconds

Feature based Pre-processing Method to compensate color mismatching for Multi-view Video (다시점 비디오의 색상 성분 보정을 위한 특징점 기반의 전처리 방법)

  • Park, Sung-Hee;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2527-2533
    • /
    • 2011
  • In this paper we propose a new pre-processing algorithm applied to multi-view video coding using color compensation algorithm based on image features. Multi-view images have a difference between neighboring frames according to illumination and different camera characteristics. To compensate this color difference, first we model the characteristics of cameras based on frame's feature from each camera and then correct the color difference. To extract corresponding features from each frame, we use Harris corner detection algorithm and characteristic coefficients used in the model is estimated by using Gauss-Newton algorithm. In this algorithm, we compensate RGB components of target images, separately from the reference image. The experimental results with many test images show that the proposed algorithm peformed better than the histogram based algorithm as much as 14 % of bit reduction and 0.5 dB ~ 0.8dB of PSNR enhancement.

Estimation of a Gaze Point in 3D Coordinates using Human Head Pose (휴먼 헤드포즈 정보를 이용한 3차원 공간 내 응시점 추정)

  • Shin, Chae-Rim;Yun, Sang-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.177-179
    • /
    • 2021
  • This paper proposes a method of estimating location of a target point at which an interactive robot gazes in an indoor space. RGB images are extracted from low-cost web-cams, user head pose is obtained from the face detection (Openface) module, and geometric configurations are applied to estimate the user's gaze direction in the 3D space. The coordinates of the target point at which the user stares are finally measured through the correlation between the estimated gaze direction and the plane on the table plane.

  • PDF

A Method for Generation of Contour lines and 3D Modeling using Depth Sensor (깊이 센서를 이용한 등고선 레이어 생성 및 모델링 방법)

  • Jung, Hunjo;Lee, Dongeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • In this study we propose a method for 3D landform reconstruction and object modeling method by generating contour lines on the map using a depth sensor which abstracts characteristics of geological layers from the depth map. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust contour and object can be extracted. The algorithm suggested in this paper first abstracts the characteristics of each geological layer from the depth map image and rearranges it into the proper order, then creates contour lines using the Bezier curve. Using the created contour lines, 3D images are reconstructed through rendering by mapping RGB images of the visual camera. Experimental results show that the proposed method using depth sensor can reconstruct contour map and 3D modeling in real-time. The generation of the contours with depth data is more efficient and economical in terms of the quality and accuracy.

Human Action Recognition Via Multi-modality Information

  • Gao, Zan;Song, Jian-Ming;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.739-748
    • /
    • 2014
  • In this paper, we propose pyramid appearance and global structure action descriptors on both RGB and depth motion history images and a model-free method for human action recognition. In proposed algorithm, we firstly construct motion history image for both RGB and depth channels, at the same time, depth information is employed to filter RGB information, after that, different action descriptors are extracted from depth and RGB MHIs to represent these actions, and then multimodality information collaborative representation and recognition model, in which multi-modality information are put into object function naturally, and information fusion and action recognition also be done together, is proposed to classify human actions. To demonstrate the superiority of the proposed method, we evaluate it on MSR Action3D and DHA datasets, the well-known dataset for human action recognition. Large scale experiment shows our descriptors are robust, stable and efficient, when comparing with the-state-of-the-art algorithms, the performances of our descriptors are better than that of them, further, the performance of combined descriptors is much better than just using sole descriptor. What is more, our proposed model outperforms the state-of-the-art methods on both MSR Action3D and DHA datasets.

A Study on Vision-based Calibration Method for Bin Picking Robots for Semiconductor Automation (반도체 자동화를 위한 빈피킹 로봇의 비전 기반 캘리브레이션 방법에 관한 연구)

  • Kyo Mun Ku;Ki Hyun Kim;Hyo Yung Kim;Jae Hong Shim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.72-77
    • /
    • 2023
  • In many manufacturing settings, including the semiconductor industry, products are completed by producing and assembling various components. Sorting out from randomly mixed parts and classification operations takes a lot of time and labor. Recently, many efforts have been made to select and assemble correct parts from mixed parts using robots. Automating the sorting and classification of randomly mixed components is difficult since various objects and the positions and attitudes of robots and cameras in 3D space need to be known. Previously, only objects in specific positions were grasped by robots or people sorting items directly. To enable robots to pick up random objects in 3D space, bin picking technology is required. To realize bin picking technology, it is essential to understand the coordinate system information between the robot, the grasping target object, and the camera. Calibration work to understand the coordinate system information between them is necessary to grasp the object recognized by the camera. It is difficult to restore the depth value of 2D images when 3D restoration is performed, which is necessary for bin picking technology. In this paper, we propose to use depth information of RGB-D camera for Z value in rotation and movement conversion used in calibration. Proceed with camera calibration for accurate coordinate system conversion of objects in 2D images, and proceed with calibration of robot and camera. We proved the effectiveness of the proposed method through accuracy evaluations for camera calibration and calibration between robots and cameras.

  • PDF

Adaptive Hangul Steganography Based on Chaotic Encryption Technique (혼돈 암호화 기법에 기반한 적응된 한글 스테가노그래피)

  • Ji, Seon-Su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.177-183
    • /
    • 2020
  • Steganography uses digital images as a medium for sending secret messages over insecure networks. There is also a least significant bit(LSB) that is a popular method of embedding secret messages in digital images. The goal of steganography is to securely and flawlessly transmit secret messages using stego media over a communication channel. There is a need for a method to improve resistance to reduce the risk of exposure to third parties. To safely hide secret messages, I propose new algorithms that go through crossing, encryption, chaos and concealment steps. After separating Hangul syllables into choseong, jungseong and jongseong, the bitwised message information is encrypted. After applying the logistic map, bitwised information is reconstructed using the position of the chaotic sequence. The secret message is inserted into the randomly selected RGB channel. PSNR and SSIM were used to confirm the effectiveness of the applied results. It was confirmed as 44.392(dB) and 0.9884, respectively.

Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face (터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안)

  • Chuyen Pham;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.508-518
    • /
    • 2023
  • This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.

3D Omni-directional Vision SLAM using a Fisheye Lens Laser Scanner (어안 렌즈와 레이저 스캐너를 이용한 3차원 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.634-640
    • /
    • 2015
  • This paper proposes a novel three-dimensional mapping algorithm in Omni-Directional Vision SLAM based on a fisheye image and laser scanner data. The performance of SLAM has been improved by various estimation methods, sensors with multiple functions, or sensor fusion. Conventional 3D SLAM approaches which mainly employed RGB-D cameras to obtain depth information are not suitable for mobile robot applications because RGB-D camera system with multiple cameras have a greater size and slow processing time for the calculation of the depth information for omni-directional images. In this paper, we used a fisheye camera installed facing downwards and a two-dimensional laser scanner separate from the camera at a constant distance. We calculated fusion points from the plane coordinates of obstacles obtained by the information of the two-dimensional laser scanner and the outline of obstacles obtained by the omni-directional image sensor that can acquire surround view at the same time. The effectiveness of the proposed method is confirmed through comparison between maps obtained using the proposed algorithm and real maps.

Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm (스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘)

  • Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2018
  • Behavior awareness is a technology that recognizes human behavior through data and can be used in applications such as risk behavior through video surveillance systems. Conventional behavior recognition algorithms have been performed using the 2D camera image device or multi-mode sensor or multi-view or 3D equipment. When two-dimensional data was used, the recognition rate was low in the behavior recognition of the three-dimensional space, and other methods were difficult due to the complicated equipment configuration and the expensive additional equipment. In this paper, we propose a method of recognizing human behavior using only CCTV images without additional equipment using only RGB and depth information. First, the skeleton extraction algorithm is applied to extract points of joints and body parts. We apply the equations to transform the vector including the displacement vector and the relational vector, and study the continuous vector data through the RNN model. As a result of applying the learned model to various data sets and confirming the accuracy of the behavior recognition, the performance similar to that of the existing algorithm using the 3D information can be verified only by the 2D information.

Depthmap Generation with Registration of LIDAR and Color Images with Different Field-of-View (다른 화각을 가진 라이다와 칼라 영상 정보의 정합 및 깊이맵 생성)

  • Choi, Jaehoon;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.28-34
    • /
    • 2020
  • This paper proposes an approach to the fusion of two heterogeneous sensors with two different fields-of-view (FOV): LIDAR and an RGB camera. Registration between data captured by LIDAR and an RGB camera provided the fusion results. Registration was completed once a depthmap corresponding to a 2-dimensional RGB image was generated. For this fusion, RPLIDAR-A3 (manufactured by Slamtec) and a general digital camera were used to acquire depth and image data, respectively. LIDAR sensor provided distance information between the sensor and objects in a scene nearby the sensor, and an RGB camera provided a 2-dimensional image with color information. Fusion of 2D image and depth information enabled us to achieve better performance with applications of object detection and tracking. For instance, automatic driver assistance systems, robotics or other systems that require visual information processing might find the work in this paper useful. Since the LIDAR only provides depth value, processing and generation of a depthmap that corresponds to an RGB image is recommended. To validate the proposed approach, experimental results are provided.