• 제목/요약/키워드: RGB-D

검색결과 338건 처리시간 0.027초

RGB-D 이미지 인텐시티를 이용한 실내 모바일 로봇 장애물 회피 (Obstacle Avoidance of Indoor Mobile Robot using RGB-D Image Intensity)

  • 권기현;이형봉
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권10호
    • /
    • pp.35-42
    • /
    • 2014
  • 주어진 실내 환경에 위치한 여러 장애물에 대한 정보를 사전에 훈련하고 인식하여 로봇의 인지 능력을 향상시키기 위해 스테레오비전 센서의 RGB-D 이미지에서 인텐시티를 기반으로 일정 거리 안에 있는 장애물을 검출하는 기법을 제시한다. RGB-D 인텐시티 정보에 대해 PCA, ICA, LDA, SVM의 주요 패턴인식 알고리즘을 적용하여 인식률 및 실행시간을 구하고, 여러 패턴인식 알고리즘 중에서 어떤 알고리즘이 인식률 및 실행시간 측면에서 적용이 가능한지를 제시한다. 실험결과, RGB-D 데이터와 인텐시티 데이터를 비교한 결과 정확도면에서는 RGB-D 데이터가 4.2% 높은 인식률을 보였으나 훈련시간은 인텐시티 데이터가 RGB-D 이미지에 비해 LDA의 경우 29%, SVM의 경우 31% 빠르게 처리되었으며 테스트시간은 LDA의 경우 70%, SVM의 경우 33% 빠르게 처리되어 모바일 로봇 장애물 인식에 인텐시티 데이터를 사용하는 것이 정확도면에서도 우수하고 처리 속도 면에서 높은 개선효과가 있다.

구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정 (Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object)

  • 박순용;최성인
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권8호
    • /
    • pp.309-314
    • /
    • 2014
  • 물체의 360도 방향에서 다수의 RGB-D(RGB-Depth) 카메라를 이용하여 깊이영상을 획득하고 3차원 모델을 생성하기 위해서는 RGB-D 카메라 간의 3차원 변환관계를 구하여야 한다. 본 논문에서는 구형 물체를 이용하여 4대의 RGB-D 카메라 사이의 변환관계를 간편하게 구할 수 있는 시점보정(view calibration) 방법을 제안한다. 기존의 시점보정 방법들은 평면 형태의 체크보드나 코드화된 패턴을 가진 3차원 물체를 주로 사용함으로써 패턴의 특징이나 코드를 추출하고 정합하는 작업에 상당한 시간이 걸린다. 본 논문에서는 구형 물체의 깊이영상과 사진영상을 동시에 사용하여 간편하게 시점을 보정할 수 있는 방법을 제안한다. 우선 하나의 구를 모델링 공간에서 연속적으로 움직이는 동안 모든 RGB-D 카메라에서 구의 깊이영상과 사진영상을 동시에 획득한다. 다음으로 각 RGB-D 카메라의 좌표계에서 획득한 구의 3차원 중심좌표를 월드좌표계에서 일치되도록 각 카메라의 외부변수를 보정한다.

실내 환경에서 RGB-D 센서를 통한 객체 추적 알고리즘 제안 (Object tracking algorithm through RGB-D sensor in indoor environment)

  • 박정탁;이솔;박병서;서영호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.248-249
    • /
    • 2022
  • 본 논문에서는 RGB-D 카메라를 이용하여 획득한 다중 사용자의 정보를 기반으로 대상을 구분 및 추적하는 기법을 제안한다. RGB-D 카메라를 통해 획득한 3차원 정보와 색상 정보를 획득하여 각 사용자에 대한 정보를 저장한다. 전체 영상에서 획득한 각 사용자의 위치와 외형에 대한 정보를 통해 현재 프레임과 이전 프레임에서의 사용자간 유사도를 계산하여 전체 영상에서의 사용자 구분 및 위치 추적 알고리즘을 제안한다.

  • PDF

RGB-D 영상으로 복원한 점 집합을 위한 고화질 텍스쳐 추출 (High-quality Texture Extraction for Point Clouds Reconstructed from RGB-D Images)

  • 서웅;박상욱;임인성
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권3호
    • /
    • pp.61-71
    • /
    • 2018
  • RGB-D 카메라 촬영 영상에 대한 카메라 포즈 추정을 통하여 복원한 3차원 전역 공간의 점 집합으로부터 삼각형 메쉬를 생성할 때, 일반적으로 메쉬의 크기가 커질수록 3차원 모델의 품질 또한 향상된다. 하지만 어떤 한계를 넘어서 삼각형 메쉬의 해상도를 높일 경우, 메모리 요구량의 과도한 증가나 실시간 렌더링 성능저하 문제뿐만 아니라 RGB-D 센서의 정밀도 한계로 인한 접 집합 데이터의 노이즈에 민감해지는 문제가 발생한다. 본 논문에서는 실시간 응용에 적합한 3차원 모델 생성을 위하여 비교적 적은 크기의 삼각형 메쉬에 대하여 3차원 점 집합의 촬영 색상으로부터 고화질의 텍스쳐를 생성하는 기법을 제안한다. 특히 카메라 포즈 추정을 통하여 생성한 3차원 점 집합 공간과 2차원 텍스쳐 공간 간의 매핑 관계를 활용한 간단한 방법을 통하여 RGB-D 카메라 촬영 영상으로부터 복원한 3차원 모델에 대하여 효과적으로 텍스쳐를 생성할 수 있음을 보인다.

체적형 객체 촬영을 위한 RGB-D 카메라 기반의 포인트 클라우드 정합 알고리즘 (Point Cloud Registration Algorithm Based on RGB-D Camera for Shooting Volumetric Objects)

  • 김경진;박병서;김동욱;서영호
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.765-774
    • /
    • 2019
  • 본 논문에서는 다중 RGB-D 카메라의 포인트 클라우드 정합 알고리즘을 제안한다. 일반적으로 컴퓨터 비전 분야에서는 카메라의 위치를 정밀하게 추정하는 문제에 많은 관심을 두고 있다. 기존의 3D 모델 생성 방식들은 많은 카메라 대수나 고가의 3D Camera를 필요로 한다. 또한 2차원 이미지를 통해 카메라 외부 파라미터를 얻는 기존의 방식은 큰 오차를 가지고 있다. 본 논문에서는 저가의 RGB-D 카메라 8대를 사용하여 전방위 3차원 모델을 생성하기 위해 깊이 이미지와 함수 최적화 방식을 이용하여 유효한 범위 내의 오차를 갖는 좌표 변환 파라미터를 구하는 방식을 제안한다.

다시점 RGB-D 카메라를 이용한 실시간 3차원 체적 모델의 생성 (Real-time 3D Volumetric Model Generation using Multiview RGB-D Camera)

  • 김경진;박병서;김동욱;권순철;서영호
    • 방송공학회논문지
    • /
    • 제25권3호
    • /
    • pp.439-448
    • /
    • 2020
  • 본 논문에서는 다시점 RGB-D 카메라의 포인트 클라우드 정합을 위한 수정된 최적화 알고리즘을 제안한다. 일반적으로 컴퓨터 비전 분야에서는 카메라의 위치를 정밀하게 추정하는 것은 매우 중요하다. 기존의 연구에서 제안된 3D 모델 생성 방식들은 많은 카메라 대수나 고가의 3차원 Camera를 필요로 한다. 또한 2차원 이미지를 통해 카메라 외부 파라미터를 얻는 방식들은 큰 오차를 가지고 있다. 본 논문에서는 저가의 RGB-D 카메라를 8개 사용하여 전방위 자유시점을 제공할 수 있는 3차원 포인트 클라우드 및 매쉬 모델을 생성하기 위한 정합 기법을 제안하고자 한다. RGB영상과 함께 깊이지도 기반의 함수 최적화 방식을 이용하고, 초기 파라미터를 구하지 않으면서 고품질의 3차원 모델을 생성할 수 있는 좌표 변환 파라미터를 구하는 방식을 제안한다.

RGB-D 카메라 기반 실시간 3차원 복원기술 동향 (Recent Trends of Real-time 3D Reconstruction Technology using RGB-D Cameras)

  • 김영희;박지영;이준석
    • 전자통신동향분석
    • /
    • 제31권4호
    • /
    • pp.36-43
    • /
    • 2016
  • 실 환경에 존재하는 모든 것을 3차원 모델로 쉽게 복원할 수 있을 것이라는 생각과 원격지에 있는 환경과 사람을 같은 공간에 있는 듯 상호작용할 수 있게 된 것은 그리 오래되지 않았다. 이는 일정 해상도를 보장해주는 RGB-D 센서의 개발과 이러한 센서들을 사용한 3차원 복원 관련 연구들이 활발히 수행되면서 가능하게 되었다. 본고에서는 널리 쓰이고 있는 RGB-D 카메라를 사용하여 실시간으로 때로는 온라인상에서 3차원으로 복원하고 가시화하는 기술에 대하여 살펴보고자 한다. 하나 또는 여러 개의 RGB_D 카메라를 사용하거나 모바일 장치에 장착된 RGB-D 센서를 사용하여 넓은 공간, 움직이는 사람, 온라인 상태의 환경 등을 실시간으로 복원하기 위한 기술들을 세부적으로 설명한다. 또한, 최근에 발표된 기술들이 다루고 있는 이슈들을 설명하고 향후 3차원 복원기술의 연구개발 방향에 대해서 논의한다.

  • PDF

3차원 객체 인식을 위한 RGB-D 영상 특징점 추출 및 특징 기술자 생성 방법 (RGB-D Image Feature Point Extraction and Description Method for 3D Object Recognition)

  • 박노영;장영균;우운택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.448-450
    • /
    • 2012
  • 본 논문에서는 Kinect 방식의 RGB-D 영상센서를 사용하여, 깊이(Depth) 영상으로부터 3차원 객체의 기하정보를 표현하는 표면 정규 벡터(Surface Normal Vector)를 추출하고, 그 결과를 영상화하는 방법을 제안하며, 제안된 방법으로 생성된 영상으로부터 깊이 영상의 특징점 및 특징 기술자를 추출하여 3차원 객체 인식 성능을 향상시키는 방법을 제안한다. 또한 생성된 RGB-D 특징 기술자들을 객체 단위로 구분 가능한 코드북(CodeBook) 학습을 통한 인식방법을 제안하여 객체의 인식 성능을 높이는 방법을 제안한다. 제안하는 RGB-D 기반의 특징 추출 및 학습 방법은 텍스쳐 유무, 카메라 회전 및 이동 변화 등의 환경변화에 강건함을 실험적으로 증명하였으며, 이 방법은 Kinect 방식의 RGB-D 영상을 사용하는 3차원 객체/공간 인식 및 추적, 혹은 이를 응용하는 증강현실 시스템에 적용하여 사용될 수 있다.

GPU 가속화를 통한 이미지 특징점 기반 RGB-D 3차원 SLAM (Image Feature-Based Real-Time RGB-D 3D SLAM with GPU Acceleration)

  • 이동화;김형진;명현
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.457-461
    • /
    • 2013
  • This paper proposes an image feature-based real-time RGB-D (Red-Green-Blue Depth) 3D SLAM (Simultaneous Localization and Mapping) system. RGB-D data from Kinect style sensors contain a 2D image and per-pixel depth information. 6-DOF (Degree-of-Freedom) visual odometry is obtained through the 3D-RANSAC (RANdom SAmple Consensus) algorithm with 2D image features and depth data. For speed up extraction of features, parallel computation is performed with GPU acceleration. After a feature manager detects a loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and builds a 3D point cloud based map.

RGB-D 센서 기반의 로봇 위치추정 기법 연구 (A Robot Localization based on RGB-D Sensor)

  • 서유현;이현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.872-875
    • /
    • 2014
  • 재난방지 및 구호에 사용되는 로봇의 주된 목적은 인간이 직접적인 접근을 할 수 없는 지역을 사전에 탐사하여 인간으로 하여금 올바른 판단을 돕기 위함에 있다. 하지만, 재난 지역에서는 통신장애 문제나, 육안 식별이 불가능한 상황, 원격조정을 통하여 로봇이 업무 수행에 상당한 제약을 받는다. 이 문제를 해결하기 위해 "LED-RGB 칼라센서를 이용한 상호위치 인식 방법연구"[1]을 수행하였으나, RGB의 인식거리가 상당히 짧고, 판단이 모호한 단점이 발생하였다. 따라서 본 연구에서는 이를 개선한 RGB-D센서를 이용하여 RGB의 인식거리를 증가시켰다. 또한 더욱 높은 정확성을 이용하기 위해, Depth를 사용하여 사물들의 특징점들을 랜드마크로 하고 랜드마크로부터의 상대위치를 파악하여 위치를 추정하는 방법을 제안하고자 한다. 마지막으로 상호인식 알고리즘을 이전 방식과 비교하고자 한다.