• Title/Summary/Keyword: RGB color image

Search Result 483, Processing Time 0.032 seconds

Color Correlogram using Combined RGB and HSV Color Spaces for Image Retrieval (RGB와 HSV 칼라 형태를 조합하여 사용한 칼라 코렐로그램 영상 검색)

  • An, Young-Eun;Park, Jong-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.513-519
    • /
    • 2007
  • Color correlogram is widely used in content-based image retrieval (CBIR) because it extracts not only the color distribution of pixels in images like color histogram, but also extracts the spatial information of pixels in the images. The color correlogram uses single color space. Therefore, the color correlograms does not have robust discriminative features. In this paper, we use both RGB and HSV color spaces together for the color correlogram to achieve better discriminative features. The proposed algorithm is tested on a large database of images and the results are compared with the single color space color correlogram. In simulation results, the proposed algorithm 5.63 average retrieval rank less than single color space correlogram.

Color Image Segmentation Using Adaptive Quantization and Sequential Region-Merging Method (적응적 양자화와 순차적 병합 기법을 사용한 컬러 영상 분할)

  • Kwak, Nae-Joung;Kim, Young-Gil;Kwon, Dong-Jin;Ahn, Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.473-481
    • /
    • 2005
  • In this paper, we propose an image segmentation method preserving object's boundaries by using the number of quantized colors and merging regions using adaptive threshold values. First of all, the proposed method quantizes an original image by a vector quantization and the number of quantized colors is determined differently using PSNR each image. We obtain initial regions from the quantized image, merge initial regions in CIE Lab color space and RGB color space step by step and segment the image into semantic regions. In each merging step, we use color distance between adjacent regions as similarity-measure. Threshold values for region-merging are determined adaptively according to the global mean of the color difference between the original image and its split-regions and the mean of those variations. Also, if the segmented image of RGB color space doesn't split into semantic objects, we merge the image again in the CIE Lab color space as post-processing. Whether the post-processing is done is determined by using the color distance between initial regions of the image and the segmented image of RGB color space. Experiment results show that the proposed method splits an original image into main objects and boundaries of the segmented image are preserved. Also, the proposed method provides better results for objective measure than the conventional method.

  • PDF

Information Hiding Method based on Interpolation using Max Difference of RGB Pixel for Color Images (컬러 영상의 RGB 화소 최대차분 기반 보간법을 이용한 정보은닉 기법)

  • Lee, Joon-Ho;Kim, Pyung-Han;Jung, Ki-Hyun;Yoo, Kee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.629-639
    • /
    • 2017
  • Interpolation based information hiding methods are widely used to get information security. Conventional interpolation methods use the neighboring pixel value and simple calculation like average to embed secret bit stream into the image. But these information hiding methods are not appropriate to color images like military images because the characteristics of military images are not considered and these methods are restricted in grayscale images. In this paper, the new information hiding method based on interpolation using RGB pixel values of color image is proposed and the effectiveness is analyzed through experiments.

Design of Color Map Image Using Intensity-Adjustment Method (명도조정기법을 이용한 천연색 지도영상의 제작)

  • 곽재하;최철웅;강인준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.163-168
    • /
    • 1995
  • There are four types of color model to repesent color, which are RGB, IHS, CMY, and YIQ color model. RGB color model is the designation of the digital numbers(DNs) of the three primary colors(red, green, and blue), which are used to produce color images on color monitors. IHS color model is the designation of in-tensity, hue, and saturation(IHS). An advantage of considering color in terms of IHS over that of RGB is arrives more easily at a desired color product mathematically. In this study, authors use the IHS transformation and in-tensity-adjustment method to produce the color map images with Landsat TM and scanned map image. And, authors suggest the problems and their solutions when users produce the desired new images with satellite images and map images.

  • PDF

Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image (RGB 색상 기반의 실시간 영상에서 잡음에 강인한 손영역 분할)

  • Yang, Hyuk Jin;Kim, Dong Hyun;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1603-1613
    • /
    • 2017
  • This paper proposes a method for effectively segmenting the hand region using a widely popular RGB color-based webcam. This performs the empirical preprocessing method four times to remove the noise. First, we use Gaussian smoothing to remove the overall image noise. Next, the RGB image is converted into the HSV and the YCbCr color model, and global fixed binarization is performed based on the statistical value for each color model, and the noise is removed by the bitwise-OR operation. Then, RDP and flood fill algorithms are used to perform contour approximation and inner area fill operations to remove noise. Finally, ROI (hand region) is selected by eliminating noise through morphological operation and determining a threshold value proportional to the image size. This study focuses on the noise reduction and can be used as a base technology of gesture recognition application.

Conversion of Image into Sound Based on HSI Histogram (HSI 히스토그램에 기초한 이미지-사운드 변환)

  • Kim, Sung-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2011
  • The final aim of the present study is to develop the intelligent robot, emulating human synesthetic skills which make it possible to associate a color image with a specific sound. This can be done on the basis of the mutual conversion between color image and sound. As a first step of the final goal, this study focused on a basic system using a conversion of color image into sound. This study describes a proposed method to convert color image into sound, based on the likelihood in the physical frequency information between light and sound. The method of converting color image into sound was implemented by using HSI histograms through RGB-to-HSI color model conversion, which was done by Microsoft Visual C++ (ver. 6.0). Two different color images were used on the simulation experiments, and the results revealed that the hue, saturation and intensity elements of each input color image were converted into fundamental frequency, harmonic and octave elements of a sound, respectively. Through the proposed system, the converted sound elements were then synthesized to automatically generate a sound source with wav file format, using Csound.

An RGB to RGBY Color Conversion Algorithm for Liquid Crystal Display Using RGW Pixel with Two-Field Sequential Driving Method

  • Hong, Sung-Jin;Kwon, Oh-Kyong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.777-782
    • /
    • 2014
  • This paper proposes an RGB to RGBY color conversion algorithm for liquid crystal display (LCD) using RGW pixel structure with two-field (yellow and blue) sequential driving method. The proposed algorithm preserves the hue and saturation of the original color by maintaining the RGB ratio, and it increases the luminance. The performance of the proposed RGBY conversion algorithm is verified using the MATLAB simulation with 24 images of Kodak lossless true color image suite. The simulation results of average color difference CIEDE2000 (${\delta}E^*_{00}$) and scaling factor are 0.99 and 1.89, respectively. These results indicate that the average brightness is increased 1.89 times compared to LCD using conventional RGB pixel structure, without increasing the power consumption and degrading the image quality.

Color Image Segmentations of a Vitiligo Skin Image with Android Platform Smartphone (안드로이드 기반의 스마트폰을 활용한 백반증 피부 영상 분할)

  • Park, Sang-Eun;Kim, Hyun-Tae;Kim, Jeong-Hwan;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.173-178
    • /
    • 2014
  • In this study, the new color image processing algorithms with an android-based mobile device are developed to detect the abnormal color densities in a skin image and interpret them as the vitiligo lesions. Our proposed method is firstly based on transforming RGB data into HSI domain and segmenting the imag into the vitiligo-skin candidates by applying Otsu's threshold algorithm. The structure elements for morphological image processing are suggested to delete the spurious regions in vitiligo regions and the image blob labeling algorithm is applied to compare RGB color densities of the abnormal skin region with them of a region of interest. Our suggested color image processing algorithms are implemented with an android-platform smartphone and thus a mobile device can be utilized to diagnose or monitor the patient's skin conditions under the environments of pervasive healthcare services.

Color-related Query Processing for Intelligent E-Commerce Search (지능형 검색엔진을 위한 색상 질의 처리 방안)

  • Hong, Jung A;Koo, Kyo Jung;Cha, Ji Won;Seo, Ah Jeong;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.109-125
    • /
    • 2019
  • As interest on intelligent search engines increases, various studies have been conducted to extract and utilize the features related to products intelligencely. In particular, when users search for goods in e-commerce search engines, the 'color' of a product is an important feature that describes the product. Therefore, it is necessary to deal with the synonyms of color terms in order to produce accurate results to user's color-related queries. Previous studies have suggested dictionary-based approach to process synonyms for color features. However, the dictionary-based approach has a limitation that it cannot handle unregistered color-related terms in user queries. In order to overcome the limitation of the conventional methods, this research proposes a model which extracts RGB values from an internet search engine in real time, and outputs similar color names based on designated color information. At first, a color term dictionary was constructed which includes color names and R, G, B values of each color from Korean color standard digital palette program and the Wikipedia color list for the basic color search. The dictionary has been made more robust by adding 138 color names converted from English color names to foreign words in Korean, and with corresponding RGB values. Therefore, the fininal color dictionary includes a total of 671 color names and corresponding RGB values. The method proposed in this research starts by searching for a specific color which a user searched for. Then, the presence of the searched color in the built-in color dictionary is checked. If there exists the color in the dictionary, the RGB values of the color in the dictioanry are used as reference values of the retrieved color. If the searched color does not exist in the dictionary, the top-5 Google image search results of the searched color are crawled and average RGB values are extracted in certain middle area of each image. To extract the RGB values in images, a variety of different ways was attempted since there are limits to simply obtain the average of the RGB values of the center area of images. As a result, clustering RGB values in image's certain area and making average value of the cluster with the highest density as the reference values showed the best performance. Based on the reference RGB values of the searched color, the RGB values of all the colors in the color dictionary constructed aforetime are compared. Then a color list is created with colors within the range of ${\pm}50$ for each R value, G value, and B value. Finally, using the Euclidean distance between the above results and the reference RGB values of the searched color, the color with the highest similarity from up to five colors becomes the final outcome. In order to evaluate the usefulness of the proposed method, we performed an experiment. In the experiment, 300 color names and corresponding color RGB values by the questionnaires were obtained. They are used to compare the RGB values obtained from four different methods including the proposed method. The average euclidean distance of CIE-Lab using our method was about 13.85, which showed a relatively low distance compared to 3088 for the case using synonym dictionary only and 30.38 for the case using the dictionary with Korean synonym website WordNet. The case which didn't use clustering method of the proposed method showed 13.88 of average euclidean distance, which implies the DBSCAN clustering of the proposed method can reduce the Euclidean distance. This research suggests a new color synonym processing method based on RGB values that combines the dictionary method with the real time synonym processing method for new color names. This method enables to get rid of the limit of the dictionary-based approach which is a conventional synonym processing method. This research can contribute to improve the intelligence of e-commerce search systems especially on the color searching feature.

Study on an Extraction Method for a Fuel Rod Image and a Visualization of the Color Information in a Sectional Image of a Spent Fuel Assembly (사용후핵연료집합체 영상에서 핵연료봉 영상 추출방법과 색상정보의 가시화에 관한 연구)

  • Jang, Ji-Woon;Shin, Hee-Sung;Youn, Cheung;Kim, Ho-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.432-441
    • /
    • 2007
  • Image processing methods for an extraction of a nuclear fuel rod image and visualization methods of the RGB color data were studied with a sectional image of spent fuel assembly. The fuel rod images could be extracted by using a histogram analysis, an edge detection and RGB rotor data. In these results, a size of the spent fuel assembly could be measured by using a histogram analysis method and a shape of the spent fuel rod could be observed by using an edge detection method. Finally, a various analyses were established for status of the spent fuel assembly by realized various 3D images for the color data in an image of a spent fuel assembly.