• Title/Summary/Keyword: RGB color image

Search Result 483, Processing Time 0.032 seconds

Division of the Hand and Fingers In Realtime Imaging Using Webcam

  • Kim, Ho Yong;Park, Jae Heung;Seo, Yeong Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.1-6
    • /
    • 2018
  • In this paper, we propose a method dividing effectively the hand and fingers using general webcam. The method executes 4 times empirically preprocessing one to erase noise. First, it erases the overall noise of the image using Gaussian smoothing. Second, it changes from RGB image to HSV color model and YCbCr color model, executes a global static binarization based on the statistical value for each color model, and erase the noise through bitwise-OR operation. Third, it executes outline approximation and inner region filling algorithm using RDP algorithm and Flood fill algorithm and erase noise. Lastly, it erases noise through morphological operation and determines the threshold propositional to the image size and selects the hand and fingers area. This paper compares to existing one color based hand area division method and focuses the noise deduction and can be used to a gesture recognition application.

Digital Still Camera Profiling for the Optimization Of Printing Process (인쇄 공정의 최적화를 위한 디지털카메라의 Profiling)

  • Cha, Jae-Young;Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.2
    • /
    • pp.65-77
    • /
    • 2008
  • The color reproduction of digital still camera does not, in general, match those of the final prints. Because color gamut of these devices is different, it is therefore necessary to take account of a way to match. The way uses the optimized profile to print an image. This paper proposed a way to create the input profile of digital still camera for standardization printing process. The results of proposed way showed that for input profiles equivalent, good results relatively. In this paper, an experiment was done where the illumination sources used as the standard illumination 5200K and illuminated at a $45^{\circ}$ angle in the best illumination efficiently. The white balance was in mode 'custom': aperture F11, exposure time 1/60s, ISO50, focal length 80mm. The images were exported and saved as 16bit RGB tiff(AdobeRGB, sRGB, ProphotoRGB) images. To do the test, the RGB values of the RGB tiff images are processed through the ICC input profile to arrive at processed $CIEL^*a^*b^*$ values. A profiling tool such as ProfileMaker 5.0 and Monacoprofile 4.8 are used to do this. The processed CIEL*a*b* values are compared to the reference CIEL*a*b* values and these two values are used to calculate a ${\Delta}E$.

  • PDF

A Novel RGB Channel Assimilation for Hyperspectral Image Classification using 3D-Convolutional Neural Network with Bi-Long Short-Term Memory

  • M. Preethi;C. Velayutham;S. Arumugaperumal
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.177-186
    • /
    • 2023
  • Hyperspectral imaging technology is one of the most efficient and fast-growing technologies in recent years. Hyperspectral image (HSI) comprises contiguous spectral bands for every pixel that is used to detect the object with significant accuracy and details. HSI contains high dimensionality of spectral information which is not easy to classify every pixel. To confront the problem, we propose a novel RGB channel Assimilation for classification methods. The color features are extracted by using chromaticity computation. Additionally, this work discusses the classification of hyperspectral image based on Domain Transform Interpolated Convolution Filter (DTICF) and 3D-CNN with Bi-directional-Long Short Term Memory (Bi-LSTM). There are three steps for the proposed techniques: First, HSI data is converted to RGB images with spatial features. Before using the DTICF, the RGB images of HSI and patch of the input image from raw HSI are integrated. Afterward, the pair features of spectral and spatial are excerpted using DTICF from integrated HSI. Those obtained spatial and spectral features are finally given into the designed 3D-CNN with Bi-LSTM framework. In the second step, the excerpted color features are classified by 2D-CNN. The probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-CNN are fused. In the last step, additionally, Markov Random Field (MRF) is utilized for improving the fused probabilistic classification map efficiently. Based on the experimental results, two different hyperspectral images prove that novel RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM approach is more important and provides good classification results compared to other classification approaches.

Image Retrieval Using Histogram Refinement Based on Local Color Difference (지역 색차 기반의 히스토그램 정교화에 의한 영상 검색)

  • Kim, Min-KI
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1453-1461
    • /
    • 2015
  • Since digital images and videos are rapidly increasing in the internet with the spread of mobile computers and smartphones, research on image retrieval has gained tremendous momentum. Color, shape, and texture are major features used in image retrieval. Especially, color information has been widely used in image retrieval, because it is robust in translation, rotation, and a small change of camera view. This paper proposes a new method for histogram refinement based on local color difference. Firstly, the proposed method converts a RGB color image into a HSV color image. Secondly, it reduces the size of color space from 2563 to 32. It classifies pixels in the 32-color image into three groups according to the color difference between a central pixel and its neighbors in a 3x3 local region. Finally, it makes a color difference vector(CDV) representing three refined color histograms, then image retrieval is performed by the CDV matching. The experimental results using public image database show that the proposed method has higher retrieval accuracy than other conventional ones. They also show that the proposed method can be effectively applied to search low resolution images such as thumbnail images.

Developments of Parking Control System Using Color Information and Fuzzy C-menas Algorithm (컬러 정보와 퍼지 C-means 알고리즘을 이용한 주차관리시스템 개발)

  • 김광백;윤홍원;노영욱
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.87-101
    • /
    • 2002
  • In this paper, we proposes the car plate recognition and describe the parking control system using the proposed car plate recognition algorithm. The car plate recognition system using color information and fuzzy c-means algorithm consists of the extraction part of a car plate from a car image and the recognition part of characters in the extracted car plate. This paper eliminates green noise from car image using the mode smoothing and extract plate region using green and white information of RGB color. The codes of extracted plate region is extracted by histogram based approach method and is recognized by fuzzy c-means algorithm. For experimental, we tested 80 car images. We shows that the proposed extraction method is better than that from the color information of RGB and HSI, respectively. So, we can know that the proposed car plate recognition method using fuzzy c-means algorithm was very efficient. We develop the parking control system using the proposed car plate recognition method, which showed performance improvement by the experimental results.

  • PDF

A Novel RGB Image Steganography Using Simulated Annealing and LCG via LSB

  • Bawaneh, Mohammed J.;Al-Shalabi, Emad Fawzi;Al-Hazaimeh, Obaida M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.143-151
    • /
    • 2021
  • The enormous prevalence of transferring official confidential digital documents via the Internet shows the urgent need to deliver confidential messages to the recipient without letting any unauthorized person to know contents of the secret messages or detect there existence . Several Steganography techniques such as the least significant Bit (LSB), Secure Cover Selection (SCS), Discrete Cosine Transform (DCT) and Palette Based (PB) were applied to prevent any intruder from analyzing and getting the secret transferred message. The utilized steganography methods should defiance the challenges of Steganalysis techniques in term of analysis and detection. This paper presents a novel and robust framework for color image steganography that combines Linear Congruential Generator (LCG), simulated annealing (SA), Cesar cryptography and LSB substitution method in one system in order to reduce the objection of Steganalysis and deliver data securely to their destination. SA with the support of LCG finds out the optimal minimum sniffing path inside a cover color image (RGB) then the confidential message will be encrypt and embedded within the RGB image path as a host medium by using Cesar and LSB procedures. Embedding and extraction processes of secret message require a common knowledge between sender and receiver; that knowledge are represented by SA initialization parameters, LCG seed, Cesar key agreement and secret message length. Steganalysis intruder will not understand or detect the secret message inside the host image without the correct knowledge about the manipulation process. The constructed system satisfies the main requirements of image steganography in term of robustness against confidential message extraction, high quality visual appearance, little mean square error (MSE) and high peak signal noise ratio (PSNR).

Wine Label Recognition System using Image Similarity (이미지 유사도를 이용한 와인라벨 인식 시스템)

  • Jung, Jeong-Mun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang;Kim, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.125-137
    • /
    • 2011
  • Recently the research on the system using images taken from camera phones as input is actively conducted. This paper proposed a system that shows wine pictures which are similar to the input wine label in order. For the calculation of the similarity of images, the representative color of each cell of the image, the recognized text color, background color and distribution of feature points are used as the features. In order to calculate the difference of the colors, RGB is converted into CIE-Lab and the feature points are extracted by using Harris Corner Detection Algorithm. The weights of representative color of each cell of image, text color and background color are applied. The image similarity is calculated by normalizing the difference of color similarity and distribution of feature points. After calculating the similarity between the input image and the images in the database, the images in Database are shown in the descent order of the similarity so that the effort of users to search for similar wine labels again from the searched result is reduced.

Color Image Enhancement Based on Color Constancy (칼라 항상성에 기초한 칼라영상 향상)

  • 배성호;김정엽;권갑현;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.103-108
    • /
    • 1993
  • An image can be largely corrupted by the ambient illuminant, so that the image enhancement to restory natural color without respect to the ambient illuminant is needed. It this paper, a new color image enhancement technique based on color constancy is proposed. To enhance the image quality, higher volues of contrast and saturation are preferred, but their excessive values make an image unnatural. Since the color constancy processing preserves only hue, while reducing the dynamic range of lightness and saturation,the technique is needed in order to compensate this phenomenon. The proposed method transforms and increases lightness and saturation simultaneously to avoid the complexity in the related transformation by analyzing the relationship between the RGB and modified IHS coordinate system.

  • PDF