색은 칼라 모니터 상에서 삼원색에 대한 수치를 조합하여 나타내는 RGB칼라모델과 명도, 색도, 채도항의 IHS 칼라모델, CMY칼라모델, YIQ 칼라모델 등을 이용하여 나타낼 수 있다. IHS칼라모델은 RGB칼라모델보다 사용자가 색을 수학적으로 평가하여 쉽게 조정할 수 있는 이점이 있다. 본 연구에서는 Landsat TM의 밴드 3,2,1을 조합한 인공위성 영상과 스캐닝한 지도영상을 IHS 변환과 명도 조정 기법을 이용하여 색분해를 통한 재합성을 실시하므로서 천연색 지도 영상을 제작할 수 있었다. 그리고 인공위성영상과 지도영상을 합성할 때 발생하는 문제점과 그 해결방안을 제시하였다.
It is very important to inspect color of printed texture in the textile process. To distinguish the color of the printed texture, RGB color values obtained from a scanner must be transformed to the standard colorimetric system used in the textile industry. It is XYZ color system that is defined by CIE(Commission Internationale do 1Eclairage). The mapping from RGB to XYZ color values is not simple and the scanner has even a positional deviation of RGB colors. In this paper an automatic color inspection method using a general scanning machine is presented. We used a U(neural network) model to map RGB to XYZ and compensate the positional error. In the real experiments, this inspection system shows to get very exact XYZ values from the traditional scanner regardless of the measuring position.
본 논문은 기존 논문들에서 사용되었던 다양한 색상모델의 연기색상을 비교분석하여, 화재 영상감시 시스템의 연기 검출에 최적인 컬러모델을 제시하기 위한 컬러영상의 연기색상 분석에 대하여 기술한다. 각 표준 색상 모델에서의 연기색상과 비연기 색상간의 분리도 특성을 비교하기 위하여 히스토그램 교차 분석 기법을 사용하였다. 표준색상모델로는 RGB, YCbCr, CIE-Lab, HSV 컬러모델을 사용하였으며, 계산된 히스토그램 교차(Histogram Intersection)값이 작으면 연기와 비연기 영역분할 특성이 우수한 컬러모델이며 큰 값을 가지는 컬러모델에서는 연기분할 특성이 좋지 않다. 4개의 표준 컬러모델을 분석한 결과, RGB 색상모델과 HSV 색상모델이 각각 평균 히스토그램 교차 값이 0.14, 0.156 으로서 연기와 비연기 색상 분리도가 매우 우수하여 컬러영상의 색상기반 연기검출에 가장 최적이며 실용적인 컬러모델로 확인되었다.
It is very important to inspect the color of printed texture in the textile process. The standard colorimetric system used for the recognition of the color in the textile industry. It uses XYZ color system defined by CIE (Commission Internationale de 1Eclairage), but is too expensive. Therefore, in this paper, we propose a color inspection system of the printed texture using a color scanner. Because the scanner uses RGB value for color, it is necessary the mapping from RGB to XYZ. However, the mapping is not simple, and the scanner has even positional deviation because of the geometric characteristics. To transform from RGB to XYZ, we used a NN (neural network) model and also compensated the positional deviation. In real experiments, we could get fairly exact XYZ value from the proposed color inspection system in spite of using a color scanner with large measuring area.
In this paper, an experiment was done where the input device used the linear multiple regression and the sRGB color space to perform a color transformation. The output device used the GOG, GOGO and sRGB for the color transformation. After the input device underwent a color transformation, a $3\;{\times}\;20\;size$ matrix was used in a linear multiple regression and the scanner's color representation of scanner was better than a digital still camera's color representation. When using the sRGB color space, the original copy and the output copy had a color difference of 11. Therefore it was more efficient to use the linear multiple regression method than using the sRGB color space. After the input device underwent a color transformation, the additivity of the LCD monitor's R, G and B signal value improved and therefore the error in the linear formula transformation decreased. From this change, the LCD monitor with the GOG model applied to the color transformation became better than LCD monitors with other models applied to the color transformation. Also, the color difference varied more than 11 from the original target in CRT and LCD monitors when a sRGB color transformation was done in restricted conditions.
모바일 AMOLED 디스플레이의 소모 전력을 소프트웨어 수준에서 참조하기 위해서는 소모 전력에 대한 모델이 필요하다. 하지만, 전력 모델을 얻기 위한 기존 연구들은 전력 측정 활동을 위한 실험 환경 및 장비가 필수적으로 요구되었다. 또한, 모델링을 위해 사용된 RGB 값의 조합이 무분별하고, 매우 적어 RGB 값들 간의 상호 영향을 모델에 반영하기 어려웠다. 본 연구는 이러한 문제점을 해결하기 위해 RGB 색 공간분할 기법 및 으로 구성된 맵핑 테이블 제공 방법을 제안한다. 제안된 분할 기법을 통해 색과 함께 전력을 고려하며 RGB 조합들을 샘플링하고, 제안된 맵핑 테이블 제공 방법에 따라 샘플링된 RGB 조합들로 구성된 맵핑 테이블을 생성한다. 실험을 통해 색 차원과 전력 차원에서의 분할 기법에 따른 샘플들의 특징을 분석하였고, 이를 바탕으로 AMOLED 디스플레이에 대한 맵핑 테이블을 생성하였다. 더불어, 맵핑 테이블을 활용하여 각기 다른 4개의 전력 모델을 평가함으로써 맵핑 테이블의 재사용 가능성을 확인하였다. 이러한 맵핑 테이블은 연구자들에게 제공되어 전력 측정 활동 없이도 전력 모델을 생성하는데 활용될 수 있다.
The purpose of this study is to check if LED lighting can be used as general lighting and examine the color rendering property of full color RGB LED lighting. CRI is one of the important properties of evaluating lighting. However the present CRI does not fully evaluate LED lightings. Firstly, the performance of a simple task was compared other than comparing CRI values for different lighting. For experimental preparation three types of lightings were used; standard D65 fluorescent tube, general household fluorescent tube, and RGB LED lighting. All three lightings show high error for Purple-Red. All three lightings show similar error for all hues and prove that color discrimination is not affected by the lighting. This proves that LED could be used as general lighting. Secondly, problems of the conventional CIE CRI method are considered and new models are suggested for the new lighting source. Each of the models was evaluated with visual experiment results obtained by the white light matching experiment. The suggested model is based on the CIE CRI method but replaces the color space model by CIELAB, color difference model by CIEDE2000, and chromatic adaptation model by CAT02.
본 논문에서는 spatial gradient를 이용한 강인한 물체 추출 방법을 제안한다. 제안한 방법은 먼저 복잡한 환경과 다양한 빛의 변화에 의해 나타나는 에러 값 등을 해결하기 위해 기존에 제안된 입력 영상과 기준 영상에서 밝기와 색 성분을 이용하여 최초 배경을 제거한다. 배경을 제거한 다음, 그림자로 인식되어 전경 영역에 추가된 부분을 RGB 칼라 모델과 정규화 된 RGB 칼라 모델을 이용하여 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 갖는 영역을 제거한다. 마지막으로, 배경으로 인식되어 전경으로부터 제거된 부분을 입력 영상의 공간상 정보인 spatial gradient와 HSI 칼라 모델을 이용하여 복구하는 방법을 제안한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 실내 외 환경에서의 실험을 통해 그 응용 가능성을 증명한다.
본 논문은 널리 알려진 RGB 색상 기반의 웹캠을 사용한 손 영역을 효율적으로 분할하는 방법을 제안한다. 이 방법은 잡음을 제거하기 위하여 네 번의 경험적 전처리 방법을 수행한다. 먼저, 전체 영상 잡음을 제거하기 위하여 가우시안 평활화를 수행한다. 다음으로, RGB 영상은 HSV와 YCbCr 색상 모델로 변환되어, 각 색상 모델에 대해 통계적인 값에 기반하여 전역 고정 이진화가 수행된 후, 잡음은 bitwise-OR 연산에 의해 제거된다. 다음으로, 윤곽 근사화와 내부 영역 구멍 연산을 위해 RDP와 flood fill 알고리즘이 사용된다. 끝으로, 모폴로지 연산을 통하여 잡음을 제거하고 영상의 크기에 비례한 임계값을 결정하여 손 영역이 결정된다. 본 연구는 잡음 제거에 초점을 맞추고 있고 손 동작 인식 응용 기술에 사용될 수 있다.
현재 수입차 차량의 등록대수가 해를 거듭할수록 증가하는 추세이다. 그에 맞춰 수입차와 같은 고급 차량을 정비하기 위한 차량 정비 업체의 환경 개선이 지속적으로 이루어지고 있다. 본 논문에서는 정비 차량의 고객 신뢰도를 제공하기 위한 스마트 차량 관리 시스템을 구현하기 위해 HSV 색상모델 기반의 키 프레임 추출 기법을 제안한다. 수리 차량의 입고 시 차량 번호판 인식 프로세스를 통해 차량의 번호판을 자동으로 인식 후, 이를 기준으로 차량의 수리 이력 확인 및 수리 요청을 처리한다. 차량 수리 동영상을 토대로 차량 수리 키 프레임을 추출하여 사용자의 스마트폰으로 제공하는 서비스를 구현한다. 아울러 제안하는 기법을 스마트 차량 관리 시스템에 적용함으로써 서비스의 우수성을 검증한다. 마지막으로 키 프레임 추출 기법의 성능을 향상시키기 위해 RGB 색상을 HSV 색상으로 변환하여 처리한다. 그 결과 제안된 방법의 키 프레임 추출을 위한 성능 평가에서 기존의 RGB 색상모델보다 HSV 색상모델이 재현율 측면에서 약 30% 더 우수함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.