• Title/Summary/Keyword: RGB 색 체계

Search Result 6, Processing Time 0.016 seconds

Color Modeling of Milled Rice by Milling Degree (도정도에 따른 쌀의 칼라 모델링)

  • Kim, Oui-Woung;Kim, Hoon;Lee, Se-Eun
    • Food Science and Preservation
    • /
    • v.12 no.2
    • /
    • pp.141-145
    • /
    • 2005
  • To investigate the relationship between the milling degree and color of milled rice, an empirical whiteness model was developed according to the milling degree from $0\%\;to\;20\%$ using paddy of three different varieties of Chuchung, Nampyong and Odae. The values of determination coefficient and the root mean square error between measured and predicted whiteness were 0.990, 0.877, respectively, and the whiteness model was proved to be quite applicable. The relationships between whiteness values and color factors in several color systems were tested to select useful color factors for development of convenient whiteness meter. The whiteness value of milled rice according to degree of milling could be converted into b and Hunter whiteness in Lab color system. B in RGB color system at high values of determination coefficient were 0.990, 0.985, and 0.989, respectively.

Practical use palette research of color name digitl search system (색이름 디지털 검색체계의 실용팔레트 연구)

  • 문은배
    • Archives of design research
    • /
    • v.16 no.3
    • /
    • pp.161-174
    • /
    • 2003
  • Choice and use of color are very important field for designer. Present color sprang by central field of design business unlike past. Color is used mainly by three fields of sensitivity, administration, mind. But, do substantial design including all of three fields at use. Practical research field that is based on basic research when see as actuality of domestic color design is been behind real condition. Specially, color sensitivity field and color management field are very important field, it can speak that color name arid related area are most important among two. Because collar name includes sensitivity and color management. This research constructs correct data because investigate and analyze and search all compatible color names that is announced in existing or is recorded in public cosmopolitanly. As a result, it is to promise accuracy when produce creation of idea and result of design using color name. Examined laying stress on color that domestic data that is used in research is basis with Korean industrial Standard, connection literature, on-the-spot probe. International data investigated American ISCC-NBS to base. Other abroad color name data examined official data of each country all systematically with Japan, Europe. Findings about 11,000 basis color names and 33,000 application color names sorted collection. Collection method and classification system follow in international standard and arranged for user's tile convenience. Also, use frequency did laying stress on Munsell that is high color system so that can aid in industrial design business. Improved to write all international standard color values sue as RGB, CMYK, XYZ and can be applied all in each field of design. Is applying and get along with continuation improvement and development in homepage of present KIDP, it may become more worth research.

  • PDF

Assessment of Fire-Damaged Mortar using Color image Analysis (색도 이미지 분석을 이용한 화재 피해 모르타르의 손상 평가)

  • Park, Kwang-Min;Lee, Byung-Do;Yoo, Sung-Hun;Ham, Nam-Hyuk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.83-91
    • /
    • 2019
  • The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from $100^{\circ}C$ to $1000^{\circ}C$. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of $400^{\circ}C$. However there was a sudden decrease in strength at the temperature above $500^{\circ}C$, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature $700^{\circ}C$ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of $L^*a^*b$ color analysis show that $b^*$ increases rapidly after $700^{\circ}C$. It is analyzed that the intensity of yellow becomes strong after $700^{\circ}C$. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after $700^{\circ}C$. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow($b^*$ or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.

Traffic Sign Recognition using SVM and Decision Tree for Poor Driving Environment (SVM과 의사결정트리를 이용한 열악한 환경에서의 교통표지판 인식 알고리즘)

  • Jo, Young-Bae;Na, Won-Seob;Eom, Sung-Je;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2014
  • Traffic Sign Recognition(TSR) is an important element in an Advanced Driver Assistance System(ADAS). However, many studies related to TSR approaches only in normal daytime environment because a sign's unique color doesn't appear in poor environment such as night time, snow, rain or fog. In this paper, we propose a new TSR algorithm based on machine learning for daytime as well as poor environment. In poor environment, traditional methods which use RGB color region doesn't show good performance. So we extracted sign characteristics using HoG extraction, and detected signs using a Support Vector Machine(SVM). The detected sign is recognized by a decision tree based on 25 reference points in a Normalized RGB system. The detection rate of the proposed system is 96.4% and the recognition rate is 94% when applied in poor environment. The testing was performed on an Intel i5 processor at 3.4 GHz using Full HD resolution images. As a result, the proposed algorithm shows that machine learning based detection and recognition methods can efficiently be used for TSR algorithm even in poor driving environment.

Development of RGBW Dimming Control Sensitivity Lighting System based on the Intelligence Algorithm (지능형 알고리즘 기반 RGBW Dimming control LED 감성조명 시스템 개발)

  • Oh, Sung-Kwun;Lim, Sung-Joon;Ma, Chang-Min;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.359-364
    • /
    • 2011
  • The study uses department of the sensitivity and fuzzy reasoning, one of artificial intelligence algorithms, so that develop LED lighting system based on fuzzy reasoning for systematical control of the LED color temperature. In the area of sensitivity engineering, by considering the relation between color and emotion expressed as an adjective word, the corresponding sensitivity word can be determined, By taking into consideration the relation between the brain wave measured from the human brain and the color temperature, the preferred lesson subject can be determined. From the decision of the sensitivity word and the lesson subject, we adjust the color temperature of RGB (Red, Green, Blue) LED. In addition, by using the information of the latitude and the longitude from GPS(Global Positioning System), we can calculate the on-line moving altitude of sun. By using the sensor information of both temperature and humidity, we can calculate the discomfort index. By considering the altitude of sun as well as the value of the discomfort index, the illumination of W(white) LED and the color temperature of RGB LED can be determined. The (LED) sensitivity lighting control system is bulit up by considering the sensitivity word, the lesson subject, the altitude of sun, and the discomfort index The developed sensitivity lighting control system leads to more suitable atmosphere and also the enhancement of the efficiency of lesson subjects as well as business affairs.

Passport Recognition using PCA-based Face Verification and SOM Algorithm (PCA 기반 얼굴 인증과 SOM 알고리즘을 이용한 여권 인식)

  • Lee Sang-Soo;Jang Do-Won;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.285-290
    • /
    • 2006
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 본 논문의 구성은 여권 인식과 얼굴 인증 부분으로 구성되며, 여권 인식 부분에서는 소벨 연산자, 수평 최소값 필터 등을 적용한 후, 8 방향 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출하고 기울기를 보정한다. 추출된 문자열은 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다. 이진화된 문자열 영역에 대해 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한 후에 SOM(Self-Organizing Maps) 알고리즘을 적용하여 여권 코드를 인식한다. 얼굴 인증 부분에서는 여권 사진 영역의 특징을 이용하여 얼굴 후보 영역을 추출한 후, RGB와 YCbCr 색공간에서 피부색 정보를 이용하여 얼굴 영역을 추출한다. 추출된 얼굴 영역은 PCA(Principal Component Analysis) 알고리즘을 적용하여 특징 벡터를 구하고 여권 코드가 인식된 결과를 바탕으로 여권 소지자의 데이터 베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능 평가를 위하여 원본 여권의 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF