• Title/Summary/Keyword: RFB

Search Result 52, Processing Time 0.014 seconds

A Study on the Magnetic Field Improvement for 13.56MHz RFID Reader Antenna (13.56MHz RFID 리더 안테나의 자계 필드 개선에 관한 연구)

  • Kim, Hyuck-Jin;Yang, Woon-Geun;Yoo, Hong-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, we suggested a new antenna structure for the RFID(Radio Frequency IDentification) reader. The conventional RFID reader uses a loop antenna. The central area of a loop antenna shows a low magnetic field strength, especially for the case of a large loop antenna diameter. We proposed a parallel-fed multiple loop antenna. Simulation and measurement were carried out for a single loop antenna, series-fed and parallel-fed multiple loop antennas. Simulation results show that we can obtain 0.40A/m, 0.68A/m, 1.98A/m of magnetic field strengths at the central point of a reader antenna for a single loop antenna, series-fed and parallel-fed multiple loop antennas, respectively. We measured the $79mm{\time}48mm$ tag area averaged induced voltages with applying 20Vp-p same source signals to reader antennas through the resistors. Measured tag area averaged induced voltages at the central point of a reader antennas were 0.76V, 1.45V, 4.04V for a single loop antenna series-fed and parallel-fed multiple loop antennas, respectively. The results show that we can get high induced voltage which can grantee a longer reading distance with a proposed parallel-fed multiple loop antenna.

Disproportional Insertion Policy for Improving Query Performance in RFID Tag Data Indices (RFID 태그 데이타 색인의 질의 성능 향상을 위한 불균형 삽입 정책)

  • Kim, Gi-Hong;Hong, Bong-Hee;Ahn, Sung-Woo
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.432-446
    • /
    • 2008
  • Queries for tracing tag locations are among the most challenging requirements in RFID based applications, including automated manufacturing, inventory tracking and supply chain management. For efficient query processing, a previous study proposed the index scheme for storing tag objects, based on the moving object index, in 3-dimensional domain with the axes being the tag identifier, the reader identifier, and the time. In a different way of a moving object index, the ranges of coordinates for each domain are quite different so that the distribution of query regions is skewed to the reader identifier domain. Previous indexes for tags, however, do not consider the skewed distribution for query regions. This results in producing many overlaps between index nodes and query regions and then causes the problem of traversing many index nodes. To solve this problem, we propose a new disproportional insertion and split policy of the index for RFID tags which is based on the R*-tree. For efficient insertion of tag data, our method derives the weighted margin for each node by using weights of each axis and margin of nodes. Based the weighted margin, we can choose the subtree and the split method in order to insert tag data with the minimum cost. Proposed insertion method also reduces the cost of region query by reducing overlapped area of query region and MBRs. Our experiments show that the index based on the proposed insertion and split method considerably improves the performance of queries than the index based on the previous methods.