• Title/Summary/Keyword: RF-CMOS

Search Result 345, Processing Time 0.027 seconds

A Low Power Single-End IR-UWB CMOS Receiver for 3~5 GHz Band Application (3~5 GHz 광대역 저전력 Single-Ended IR-UWB CMOS 수신기)

  • Ha, Min-Cheol;Park, Byung-Jun;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.657-663
    • /
    • 2009
  • A fully integrated single ended IR-UWB receiver is implemented using 0.18 ${\mu}m$ CMOS technology. The UWB receiver adopts the non-coherent architecture, which simplifies the RF architecture and reduces power consumption. The receiver consists of single-ended 2-stage LNAs, S2D, envelope detector, VGA, and comparator. The measured results show that sensitivity is -80.8 dBm at 1 Mbps and BER of $10^{-3}$. The receiver uses no external balun and the chip size is only $1.8{\times}0.9$ mm. The consumed current is very low with 13 mA at 1.8 V supply and the energy per bit performance is 23.4 nJ/bit.

A Design of Non-Coherent CMOS IR-UWB Receiver (비동기식 CMOS IR-UWB 수신기의 설계 및 제작)

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1045-1050
    • /
    • 2008
  • In this paper presents a CMOS RF receiver for IR-UWB wireless communications is presented. The impulse radio based UWB receiver adopts the non-coherent demodulation that simplifies the receiver architecture and reduces power consumption. The IR-UWB receiver consists of LNA, envelop detector, VGA, and comparator and the receiver including envelope detector, VGA, and comparator is fabricated on a single chip using $0.18{\mu}m$ CMOS technology. The measured sensitivity of IR-UWB receiver is down to -70 dBm and the BER $10^{-3}$, respectively at data rate 1 Mbps. The current consumption of IR-UWB receiver except external LNA is 5 mA at 1.8 V.

Design of Ku-Band BiCMOS Low Noise Amplifier (Ku-대역 BiCMOS 저잡음 증폭기 설계)

  • Chang, Dong-Pil;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.199-207
    • /
    • 2011
  • A Ku-band low noise amplifier has been designed and fabricated by using 0.25 um SiGe BiCMOS process. The developed Ku-band LNA RFIC which has been designed with hetero-junction bipolar transistor(HBT) in the BiCMOS process have noise figure about 2.0 dB and linear gain over 19 dB in the frequency range from 9 GHz to 14 GHz. Optimization technique for p-tap value and electro-magnetic(EM) simulation technique had been used to overcome the inaccuracy in the PDK provided from the foundry service company and to supply the insufficient inductor library. The finally fabricated low noise amplifier of two fabrication runs has been implemented with the size of $0.65\;mm{\times}0.55\;mm$. The pure amplifier circuit layout with the reduced size of $0.4\;mm{\times}0.4\;mm$ without the input and output RF pads and DC bais pads has been incorporated as low noise amplication stages in the multi-function RFIC for the active phased array antenna of Ku-band satellite VSAT.

A CMOS IR-UWB RFIC for Location Based Systems (위치 기반 시스템을 위한 CMOS IR-UWB RFIC)

  • Lee, Jung Moo;Park, Myung Chul;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.67-73
    • /
    • 2015
  • This paper presents a fully integrated 3 - 5 GHz IR-UWB(impulse radio ultra-wide band) RFIC for Location based system. The receiver architecture adopts the energy detection method and for high speed sampling, the equivalent time sampling technique using the integrated DLL(delay locked loop) and 4 bit ADC. The digitally synthesized UWB impulse generator with low power consumption is also designed. The designed IR-UWB RFIC is implemented on $0.18{\mu}m$ CMOS technology. The receiver's sensitivity is -85.7 dBm and the current consumption of receiver and transmitter is 32 mA and 25.5 mA respectively at 1.8 V supply.

A Millimeter-Wave LC Cross-Coupled VCO for 60 GHz WP AN Application in a 0.13-μm Si RF CMOS Technology

  • Kim, Nam-Hyung;Lee, Seung-Yong;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.295-301
    • /
    • 2008
  • Recently, the demand on mm-wave (millimeter-wave) applications has increased dramatically. While circuits operating in the mm-wave frequency band have been traditionally implemented in III-V or SiGe technologies, recent advances in Si MOSFET operation speed enabled mm-wave circuits realized in a Si CMOS technology. In this work, a 58 GHz CMOS LC cross-coupled VCO (Voltage Controlled Oscillator) was fabricated in a $0.13-{\mu}m$ Si RF CMOS technology. In the course of the circuit design, active device models were modified for improved accuracy in the mm-wave range and EM (electromagnetic) simulation was heavily employed for passive device performance predicttion and interconnection parasitic extraction. The measured operating frequency ranged from 56.5 to 58.5 GHz with a tuning voltage swept from 0 to 2.3 V. The minimum phase noise of -96 dBc/Hz at 5 MHz offset was achieved. The output power varied around -20 dBm over the measured tuning range. The circuit drew current (including buffer current) of 10 mA from 1.5 V supply voltage. The FOM (Figure-Of-Merit) was estimated to be -165.5 dBc/Hz.

A Design of 77 GHz LNA Using 65 nm CMOS Process (65 nm CMOS 공정을 이용한 77 GHz LNA 설계)

  • Kim, Jun-Young;Kim, Seong-Kyun;Cui, Chenglin;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.915-921
    • /
    • 2013
  • This work presents a 77 GHz low noise amplifier(LNA) for automotive radar systems using 65 nm RF CMOS process. The LNA is composed of three stage common source amplifiers and includes transmission line matching networks. To reduce the time for three dimensional EM simulation, we optimize the transmission line impedance matching network using a pre-built EM library. The proposed compact simulation technique is confirmed by measurement results. The peak gain of the LNA is 10 dB at 77 GHz and input/output return losses are below -10 dB around the design frequency.

A 0.13 ${\mu}m$ CMOS UWB RF Transmitter with an On-Chip T/R Switch

  • Kim, Chang-Wan;Duong, Quoc-Hoang;Lee, Seung-Sik;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.526-534
    • /
    • 2008
  • This paper presents a fully integrated 0.13 ${\mu}m$ CMOS MB-OFDM UWB transmitter chain (mode 1). The proposed transmitter consists of a low-pass filter, a variable gain amplifier, a voltage-to-current converter, an I/Q up-mixer, a differential-to-single-ended converter, a driver amplifier, and a transmit/receive (T/R) switch. The proposed T/R switch shows an insertion loss of less than 1.5 dB and a Tx/Rx port isolation of more than 27 dB over a 3 GHz to 5 GHz frequency range. All RF/analog circuits have been designed to achieve high linearity and wide bandwidth. The proposed transmitter is implemented using IBM 0.13 ${\mu}m$ CMOS technology. The fabricated transmitter shows a -3 dB bandwidth of 550 MHz at each sub-band center frequency with gain flatness less than 1.5 dB. It also shows a power gain of 0.5 dB, a maximum output power level of 0 dBm, and output IP3 of +9.3 dBm. It consumes a total of 54 mA from a 1.5 V supply.

  • PDF

The comparison of the CMOS Double-Balanced Mixer for WLAN applications

  • Han, Dae-Hoon;Kim, Bok-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.531-532
    • /
    • 2008
  • In this paper, we present the comparison of the CMOS Double-Balanced Mixer for WLAN applications using the tail current source and not using it at the same current. The mixers are derived from the Gilbert cell mixer and have been simulated by using TSMC $0.18{\mu}m$ RF CMOS technology.

  • PDF

Modeling and Analysis of Silicon Substrate Coupling for CMOS RE-IC Design (CMOS RE-IC 설계를 위한 실리콘 기판 커플링 모델 및 해석)

  • 신성규;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.393-396
    • /
    • 1999
  • A circuit model of silicon substrate coupling for CMOS RF-IC design is developed. Its characteristics are analyzed by using a simple RC mesh model in order to investigate substrate coupling. The coupling effects due to the substrate were characterized with substrate resistivity, oxide thickness, substrate thickness. and physical distance. Thereby the silicon substrate effects are analytically investigated and verified with simulation. The analysis and simulation of the model have excellent agreements with MEDICI(2D device simulator) simulation results.

  • PDF

Design of the RF Front-end for L1/L2 Dual-Band GPS Receiver (L1/L2 이중-밴드 GPS 수신기용 RF 전단부 설계)

  • Kim, Hyeon-Deok;Oh, Tae-Soo;Jeon, Jae-Wan;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1169-1176
    • /
    • 2010
  • The RF front-end for L1/L2 dual-band Global Positioning System(GPS) receiver is presented in this paper. The RF front-end(down-converter) using low IF architecture consists of a wideband low noise amplifier(LNA), a current mode logic(CML) frequency divider and a I/Q down-conversion mixer with a poly-phase filter for image rejection. The current bleeding technique is used in the LNA and mixer to obtain the high gain and solve the head-room problem. The common drain feedback is adopted for low noise amplifier to achieve the wideband input matching without inductors. The fabricated RF front-end using $0.18{\mu}m$ CMOS process shows a gain of 38 dB for L1 and 41 dB for L2 band. The measured IIP3 is -29 dBm in L1 band and -33 dBm in L2 band, The input return loss is less than -10 dB from 50 MHz to 3 GHz. The measured noise figure(NF) is 3.81 dB for L1 band and 3.71 dB for L2 band. The image rejection ratio is 36.5 dB. The chip size of RF front end is $1.2{\times}1.35mm^2$.