• Title/Summary/Keyword: RF plasma nitriding

Search Result 5, Processing Time 0.02 seconds

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

RF Plasma Nitriding of AISI 304 Stainless Steel

  • Kim, Sun-Kyu;Yoo, Jung-Sik;Matthew P. Fewell
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • Austenitic stainless steel AISI 304 was nitrided in a low-pressure RF plasma using pure nitrogen. With a treatment of time of 4.0h at $400^{\circ}C$, the nitrogen-rich layer on the sample was $3\mu\textrm{m}$thick and had a hardness of approximately 4.4 times higher than that of untreated material. XRD data showed that as the process temperature rose from 350∼$450^{\circ}C$, the expanded austenite peaks became more prominent while the austenite peaks became weaker. Expanded austenite was transformed to ferrite and CrN at the treatment of$ 500^{\circ}C$. Langmuir probe measurements showed that electron density decreased above $450^{\circ}C$.

Ion Nitriding Using Pulsed D.C Glow Discharge Combined with Inductively Coupled Plasma (펄스직류방전과 유도결합방전의 복합에 의한 SCM440강의 이온질화)

  • Kim, Yoon-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • SCM440 steels were nitrided using pulsed dc plasma combined with inductively coupled plasma (ICP) generated by 13.56 MHz rf power in order to enhance case hardening depth. The case hardening depth was increased with rf power. The effective case-depth with ICP at 900 watt was as 1.6 times as that nitrided without ICP. The hardening depth was also increased up to 1.45 times. The compound layers formed on top surface were dense and thin when pulsed dc plasma was combined with ICP.

Computational Fluid Dynamic Modeling for Internal Antenna Type Inductively Coupled Plasma Systems (CFD를 이용한 내장형 안테나 유도 결합 플라즈마 시스템 모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.164-175
    • /
    • 2009
  • CFD is used to analyze gas flow characteristics, power absorption, electron temperature, electron density and chemical species profile of an internal antenna type inductively coupled plasma system. An optimized grid generation technology is used for a complex real-scale models for industry. A bare metal antenna shows concentrated power absorption around rf a feeding line. Skin depth of power absorption for a system is modeled to 50 mm, which is reported 53 mm by experiments. For an application of bipolar plates for hydrogen fuel cells, multi-sheet loading ICP nitriding system is proposed using an internal ICP antenna. It shows higher atomic nitrogen density than reported simple pulsed dc nitriding systems. Minimum gap between sheets for uniform nitriding is modeled to be 39 mm.

Martensitic Stainless Steel Nitrided in a Low-Pressure rf Plasma (RF플라즈마에 의한 마르텐사이트 스테인레스강의 질화에 관한 연구)

  • J.S. Yoo;S.K. Kim
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.69-69
    • /
    • 2001
  • We report a study of the nitriding of the martensitic grade of stainless steel AKSK 420 in a low-pressure rl discharge using pure nitrogen. Much studied samples of the austenitic grade AISI 304 were treated at the same time to provide a comparison. With a treatment time of 4.0 h at $400^{\circ}C$, the nitrogen-rich layer on MSK 420 is 20pm thick and has a hardness about 4.3 times higher than that of the untreated material. The layer thickness is much greater than that obtained on AISI 304 under identical treatment conditions, reflecting the different Cr content of the two alloys. The alloy AlISI 420 is more susceptible than AISI 304 to the formation of CrN and ferrite, and this has a deleterious effect on the hardnes, gain. Below the temperature at which CrN forms, the treated layer retains its martensitic structure, but with a larger lattice parameter than the bulk, a phase that we term expanded martensite, by analogy with the situation with austenitic stainless steel. The fact that the treated layer retains a martensitic structure is interesting in view of previous evidence that nitrogen is an austenite stabilizer.

  • PDF