• 제목/요약/키워드: RF plasma

검색결과 1,087건 처리시간 0.033초

RF-PECVD 법으로 제조된 비정질 BON박막의 산화 (Oxidation of Amorphous BON Thin Films Grown by RF-PECVD)

  • 김재운;부진효;이동복
    • 한국재료학회지
    • /
    • 제14권10호
    • /
    • pp.683-687
    • /
    • 2004
  • The BON thin films were grown on the Si substrate by the RF-PECVD method. When stored at the room temperature, the phase separation or transition of BON thin films occurred on the surface, due to the hydrophilic property of BON. The oxidation of BON thin films occurred mainly by the evaporation of B, O and N. The oxidized BON thin films consisted of an amorphous phase and a bit of the polycrystalline phase.

ECR-플라즈마 화학 증착된 알루미늄 산화막 연구 (A Study on the Characteristics of Aluminum Oxide Thin Films Prepared by ECR-PECVD)

  • 이재균;전병혁;이원종
    • 한국세라믹학회지
    • /
    • 제31권6호
    • /
    • pp.601-608
    • /
    • 1994
  • Aluminum oxide thin films were deposited on p-type(100) silicon substrates by electron cyclotron resonance plasma enhanced CVD(ECR-PECVD) using TMA[Al(CH3)3] and oxygen as reactant gases at 16$0^{\circ}C$ or lower temperatures. The aluminum oxide films deposited by ECR-PECVD have the amorphous structure with the refractive index of 1.62~1.64 and the O/Al ratio of 1.6~1.7. Oxygen flow rate necessary for the stable deposition of the aluminum oxide films increases as the deposition temperature increases. It was found from the OES analysis that the ECR plasma had les cooling effect by introducing the TMA reactant gas in comparison with the RF plasma. The properties of aluminum oxide films prepared by ECR-PECVD were compared with those prepared by RF-PECVD. The ECR-PECVD aluminum oxide films have the higher refractive indices, the lower contents of impurities (H and C) and the stronger wet etch resistance than those deposited by RF-PECVD.

  • PDF

External rf plasma treatment effect on multi-wall carbon nanotubes grown inside anodic alumina nanoholes at low deposition temperatures

  • Ahn, Kyoung-Soo;Kim, Jun-Sik;Kim, Eun-Kyu;Kim, Chae-Ok;Hong, Jin-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.692-693
    • /
    • 2002
  • Well-aligned multi-wall carbon nanotubes (MWNTs) were fabricated by utilizing a radio frequency plasma-enhanced chemical vapor deposition (rf-PECVD) system from Ni particles at the bottom of anodic alumina nanoholes (AAN). To remove the amorphous graphite layers on the AAN surface and to eliminate the protrusion of MWNT tips, the AAN surface with MWNTs were treated by external rf plasma source. As a result, the AAN surface almost became flat without having any protrusion of MWNT tips. The diameter, length of MWNTs and AAN were investigated by using a scanning electron microscopy (SEM). Raman spectroscopy was also used to characterize wall structure of the carbon nanotube. And the emission properties of the MWNTs were measured for the application of field emission display (FED) in near future.

  • PDF

RF Plasma Nitriding of AISI 304 Stainless Steel

  • Kim, Sun-Kyu;Yoo, Jung-Sik;Matthew P. Fewell
    • 한국표면공학회지
    • /
    • 제37권1호
    • /
    • pp.53-57
    • /
    • 2004
  • Austenitic stainless steel AISI 304 was nitrided in a low-pressure RF plasma using pure nitrogen. With a treatment of time of 4.0h at $400^{\circ}C$, the nitrogen-rich layer on the sample was $3\mu\textrm{m}$thick and had a hardness of approximately 4.4 times higher than that of untreated material. XRD data showed that as the process temperature rose from 350∼$450^{\circ}C$, the expanded austenite peaks became more prominent while the austenite peaks became weaker. Expanded austenite was transformed to ferrite and CrN at the treatment of$ 500^{\circ}C$. Langmuir probe measurements showed that electron density decreased above $450^{\circ}C$.

RF Plasma CVD에 의한 다이아몬드 박막의 합성 (Synthesis of Diamond thin films by RF Plasma CVD)

  • 이상희;이병수;이덕출;김영봉;김보열;이종태;우호환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.246-249
    • /
    • 1997
  • Diamond thin films were deposited on Si wafer from a mixture of CE$_4$ and H$_2$ by RF Plasma CVD. The films were de77sited under the following conditions : discharge power of 500w, H$_2$ flow rate of 30sccm, chanter pressure of 20∼50Torr, and CH$_4$ concentration of 0.5∼2%. The deposition time was 30∼40 hours because of low growth rate. The deposited films were characterized by Scanning Electron Microscopy and X-ray Diffraction method.

  • PDF

유도결합형 플라즈마에서 압력에 따른 Ar Gas의 특성분석 (Ar Gas properties of Inductively Coupled Plasma for Input Power)

  • 조주웅;이영환;허인성;김광수;최용성;이종찬;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1704-1706
    • /
    • 2003
  • Low-Pressure inductively coupled RF discharge sources have important industrial applications mainly because they can provide a high-density electrodeless plasma source with low ion energy and low power loss. In an inductive discharge, the RF power is coupled to the plasma by an electromagnetic interaction with the current flowing in a coil. In this paper, the experiments have been focussed on the electric characteristic and carried out using a single Langmuir probe. The internal electric characteristics of inductively coupled Ar RF discharge at 13.56 [MHz] have been measured over a wide range of power at gas pressure ranging from $1{\sim}70$ [mTorr].

  • PDF

RF 발생기용 고성능 능동 클램프 ZVS 플라이백 컨버터에 관한 연구 (A Study on the High Performance Active Clamp ZVS Flyback Converter for RF Generator)

  • 이우석;김준호;원충연;최대규;최상돈;김수석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.534-537
    • /
    • 2001
  • This paper deals with the active clamp ZVS flyback converter for RF generator. The proposed converter has the characteristics of the low switching noise and high efficient regarding conventional flyback converter. To verify validity of the proposed converter, the 100kHz, 48V, 300W converter are simulation and experimental result. This converter will be apply to the discharge drive circuit for PDP(Plasma Display Panel) TV.

  • PDF

N2O 반응 가스를 주입한 RF Reactive Magnetron Sputtering에 의한 ZrO2 박막의 구조 및 부식특성 연구 (Structural and Corrosive Properties of ZrO2 Thin Films using N2O as a Reactive Gas by RF Reactive Magnetron Sputtering)

  • 지승현;이석희;백종혁;김준환;윤영수
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.69-73
    • /
    • 2011
  • A $ZrO_2$ thin film as a corrosion protective layer was deposited on Zircaloy-4 (Z-4) clad material using $N_2O$ as a reactive gas by RF reactive magnetron sputtering at room temperature. The Z-4 substrate was located in plasma or out of plasma during the $ZrO_2$ deposition process to investigate mechanical and corrosive properties for the plasma immersion. Tetragonal and monoclinic phases were existed in $ZrO_2$ thin film immersed in plasma. We observed that a grain size of the $ZrO_2$ thin film immersed in plasma state is larger than that of the $ZrO_2$ thin film out of plasma state. In addition, the corrosive property of the $ZrO_2$ thin films in the plasma was characterized using the weight gains of Z-4 after the corrosion test. Compared with the $ZrO_2$ thin film immersed out of plasma, the weight gains of $ZrO_2$ thin film immersed in plasma were larger. These results indicate that the $ZrO_2$ film with the tetragonal phase in the $ZrO_2$ can protect the Z-4 from corrosive phenomena.

Etch Characteristics of $SiO_2$ by using Pulse-Time Modulation in the Dual-Frequency Capacitive Coupled Plasma

  • 전민환;강세구;박종윤;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.472-472
    • /
    • 2011
  • The capacitive coupled plasma (CCP) has been extensively used in the semiconductor industry because it has not only good uniformity, but also low electron temperature. But CCP source has some problems, such as difficulty in varying the ion bombardment energy separately, low plasma density, and high processing pressure, etc. In this reason, dual frequency CCP has been investigated with a separate substrate biasing to control the plasma parameters and to obtain high etch rate with high etch selectivity. Especially, in this study, we studied on the etching of $SiO_2$ by using the pulse-time modulation in the dual-frequency CCP source composed of 60 MHz/ 2 MHz rf power. By using the combination of high /low rf powers, the differences in the gas dissociation, plasma density, and etch characteristics were investigated. Also, as the size of the semiconductor device is decreased to nano-scale, the etching of contact hole which has nano-scale higher aspect ratio is required. For the nano-scale contact hole etching by using continuous plasma, several etch problems such as bowing, sidewall taper, twist, mask faceting, erosion, distortions etc. occurs. To resolve these problems, etching in low process pressure, more sidewall passivation by using fluorocarbon-based plasma with high carbon ratio, low temperature processing, charge effect breaking, power modulation are needed. Therefore, in this study, to resolve these problems, we used the pulse-time modulated dual-frequency CCP system. Pulse plasma is generated by periodical turning the RF power On and Off state. We measured the etch rate, etch selectivity and etch profile by using a step profilometer and SEM. Also the X-ray photoelectron spectroscopic analysis on the surfaces etched by different duty ratio conditions correlate with the results above.

  • PDF

RF 열플라즈마를 이용한 이차전지 음극재용 탄소나노실리콘복합소재 합성 (Synthesis of Carbon Nano Silicon Composites for Secondary Battery Anode Materials Using RF Thermal Plasma)

  • 이순직;김대신;연정미;박원규;신명선;최선용;주성후
    • 한국재료학회지
    • /
    • 제33권6호
    • /
    • pp.257-264
    • /
    • 2023
  • To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).