• 제목/요약/키워드: RF magnetron sputter deposition

검색결과 86건 처리시간 0.026초

ZnO 박막의 RF 마그네트론 스퍼터 증착 중 미리 가열된 기판의 자연냉각 효과 (The Natural Cooling Effects of Pre-heated Substrate during RF Magnetron Sputter Deposition of ZnO)

  • 박성현;이능헌
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.905-909
    • /
    • 2007
  • Crystalline and micro-structural characteristics of ZnO thin films which were deposited on p-Si(100) with cooling naturally down of pre-heated substrate during RF magnetron sputter deposition, were investigated by XRD and SEM in this paper. The film which was prepared on the substrate which was pre-heated to $400^{\circ}C$ before deposition and then cooled naturally down during deposition, showed the most outstanding c-axis preferred orientation. The ZnO thin film having the best crystalline result were applied to SMR type FBAR device and resonance properties of the device were investigated by network analyzer. It showed that resonance frequency was 2.05 GHz, return loss was -30.64 dB, quality factor was 3169 and electromechanical coupling factor was 0.4 %. This deposition method would be very useful for application of surface acoustic wave filter or film bulk acoustic wave resonator.

RF 스퍼터를 이용하여 ZnO 증착 시 기판의 냉각율이 박막의 c-축 배향성에 미치는 영향 (Effects of Cooling Rate of Pre-heated Substrate on C-Axis Orientation of ZnO Prepared by RF Sputter Deposition)

  • 박성현;이능헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권12호
    • /
    • pp.560-564
    • /
    • 2006
  • ZnO thin films were prepared by RF magnetron sputter deposition on p-Si(100) wafer with various cooling rates of substrate temperature such as the substrates were pre-heated to $400^{\circ}C$ before the deposition and then cooled down naturally or slowly to $300^{\circ}C,\;200^{\circ}C,\;100^{\circ}C$, and R.T. by the temperature controller during the deposition. Crystalline and micro-structural characteristics of the films were investigated by XRD and SEM. ZnO films which cooled down naturally or slowly by the temperature controller during the deposition, especially the film were deposited with cooling down from $400^{\circ}C\;to\;200^{\circ}C$ slowly. showed the most outstanding c-axis preferred orientation.

Luminescence properties of $YVO_4:Eu^{3+}$ thin film phosphor deposited by RF magnetron sputter deposition technique

  • Kang, Jong-Hyuk;Han, Ji-Yeon;Jang, Ho-Seong;Yoo, Hyoung-Sun;Yun, Sun-Jin;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1547-1550
    • /
    • 2007
  • $YVO_4:Eu^{3+}$ thin film phosphor samples have been deposited by using RF magnetron sputter deposition technique with various deposition temperatures. The Effect of deposition temperature (room temperature to $450\;^{\circ}C$) on morphological, crystal structure, and luminescence properties of $YVO_4:Eu^{3+}$ thin film phosphor has also been investigated. As the deposition temperature increases, the size of crystal grain and surface roughness of thin film increases principally and its crystallinity also increases. It is found that the asdeposited $YVO_4:Eu^{3+}$ thin film excited either photon or electron shows typical luminescence spectra successfully. CIE color coordinates of $YVO_4:Eu^{3+}$ thin film phosphor with increasing deposition temperature moved towards more reddish region.

  • PDF

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권1호
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

RF 스퍼터링 증착된 $TiO_{2}$ 박막의 염료감응형 태양전지 적용 연구 (Sputter Deposition and Surface Treatment of $TiO_{2}$ films for Dye-Sensitized Solar Cells using Reactive RF Plasma)

  • 김미정;서현웅;최진영;조재석;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.309-312
    • /
    • 2007
  • Sputter deposition followed by surface treatment was studied using reactive RF plasma as a method for preparing titanium oxide($TiO_{2}$) films on indium tin oxide(ITO) coated glass substrate for dye-sensitized solar cells(DSSCs). Anatase structure $TiO_{2}$ films deposited by reactive RF magnetron sputtering under the conditions of $Ar/O_{2}$(5%) mixtures, RF power of 600W and substrate temperature of $400^{\circ}C$ were surface-treated by inductive coupled plasma(ICP) with $Ar/O_{2}$ mixtures at substrate temperature of $400^{\circ}C$, and thus the films were applied to the DSSCs, The $TiO_{2}$ Films made on these exhibited the BET specific surface area of 95, the pore volume of $0.3cm^{2}$ and the TEM particle size of ${\sim}25$ nm. The DSSCs made of this $TiO_{2}$ material exhibited an energy conversion efficiency of about 2.25% at $100mW/cm^{2}$ light intensity.

  • PDF

DC 및 RF 스퍼터링법으로 증착한 Cr 박막의 특성 비교 (A Comparison of the Properties of DC and RF Sputter - deposited Cr films)

  • 박민우;이종무
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.461-465
    • /
    • 2006
  • Chromium (Cr) films were deposited on plain carbon steel sheets by DC and RF magnetron sputtering as well as by electroplating. Effects of DC or RF sputtering power on the deposition rate and properties such as, hardness, surface roughness and corrosion-resistance of the Cr films were investigated. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microcopy (SEM) analyses were performed to investigate the crystal structure, surface roughness, thickness of the Cr films. Salt fog tests were used to evaluate the corrosion resistance of the samples. The deposition rate, hardness, and surface roughness of the Cr film deposited by either DC or RF sputtering increase with the increase of sputtering power but the adhesion strength is nearly independent of the sputtering power. The deposition rate, hardness, and adhesion strength of the Cr film deposited by DC sputtering are higher than those of the Cr film deposited by RF sputtering, but RF sputtering offers smoother surface and higher corrosion-resistance. The sputter-deposited Cr film is harder and has a smoother surface than the electroplated one. The sputter-deposited Cr film also has higher corrosion-resistance than the electroplated one, which may be attributed to the smoother surface of the sputter-deposited film.

RF마그네트론 스퍼터 증착장치 개발연구(I) (Study on the Development of RF Magnetron Sputter-Deposition System(I))

  • 김희제;문덕쇠;진윤식;이홍식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.612-614
    • /
    • 1993
  • Sputtering requires a way to bombard the target with sufficient momentum. Positive ions are the most convenient source since their energy and momentum can be controlled by applying a potential to the target. Although many types of discharges have been used for sputtering, magnetrons are now the most widely used because of the high ion current densities. Namely, plasma near the target electrode is confined by magnetic field using permanent magnet, so that the collision probability is increased. It is important to develop RF magnetron sputtering system which has many excellent merits compared with conventional methods. Our study aims to develop 1 kW RF source(13.56 MHz, TR type) and to accumulate the design and construction technology of RF magnetron sputter-deposition system. We developed 1 kW RF sputtering system to deposit thin film. These films are deposited by this RF source matched by auto-matching system using primarily argon gas. Target of Au, Ni, Al, and $SiO_2$ was well deposited on the argon pressure of 5-10 mTorr.

  • PDF

RF 스퍼터링 법에 의한 ZnO 박막의 결정성과 기판의 냉각속도 (The crystalline characteristics of ZnO deposited on various cooling rates by RF sputter)

  • 박성현;이능헌;지승한;전석환;이상훈;추순남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.257-258
    • /
    • 2006
  • ZnO thin films were prepared by RF magnetron sputter deposition on p-Si(100) wafer with various cooling rates of substrate temperature such as the substrates were pre-heated to $400^{\circ}C$ before the deposition and then cooled down naturally or slowly to $300^{\circ}C$, $200^{\circ}C$, $100^{\circ}C$, and R.T., by the temperature controller during the deposition. The crystall me and micro-structural characteristics of the films were investigated by XRD and SEM ZnO films which cooled down naturally or slowly by temperature controller during deposition, especially the film were deposited with cooling down from $400^{\circ}C$ to $200^{\circ}C$ slowly, showed the most outstanding c-axis preferred orientation.

  • PDF

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

연속 ECR-CVD 조업하에 RF-magnetron-sputter의 싸이클조업을 통해 PET위에 올려진 구리박막의 특성 (Characteristic of Copper Films on PET Substrate Deposited by Cyclic Operation of RF-magnetron-sputtering Coupled with Continuous Operation of ECR-CVD)

  • 명종윤;전법주;변동진;이중기
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.465-472
    • /
    • 2005
  • Preparation of copper film on PET substrate was carried out by cyclic operation of RF-magnetron­sputtering under continuous operation of ECR-CVD. The purpose of this study is aimed to an increase in deposition rate with keeping excellent adhesion between copper film and PET. In order to optimize the sputtering time under continuous ECR-CVD, cyclic operation concept is employed. By changing parameters of cyclic operation such as split of e and cycle time of A, the characteristics and thickness of the deposited copper film are controlled. As $\theta$ value increase, film thickness could confirm to increase and its surface resistivity value decreases. The highest adhesive strength appears at $\theta=0.33$ and cycle time of 30 min. The uniformity of copper film shows $5\%$ in our experimental range.