• Title/Summary/Keyword: RF coil

Search Result 173, Processing Time 0.032 seconds

Usefulness of the Technique of Collecting Signals by Selecting Elements from RF Receive Phase Array Coil in Magnetic Resonance Imaging (자기공명영상검사 시 Array coil에서 element를 선택하여 신호를 수집하는 기법의 유용성)

  • Choi, Kwan-Woo;Son, Soon-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.461-466
    • /
    • 2018
  • In this study, we investigated the signal intensity changes by activating all and partially selected coil elements as a way to increase the SNR in a single region MR imaging. Two cylindrical fluid phantoms were placed side by side in a phase array coil and MRI scans were repeated by turning on the entire elements and selected elements. As a result, on both of the T1 and T2 weighted images signal intensities were significantly increased by 5.49% and 14.64%, respectively. In conclusion, if only a single region was to be imaged, selecting appropriate elements and collecting signals only from them could easily improve image qualities and signal intensities.

A Quadrature RF Coil for 0.3 Tesla MRI Systems (0.3 Tesla MRI용 Quadrature 고주파코일)

  • Lee, J.H.;Lee, S.Y.;Khang, D.H.;Mun, C.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.301-302
    • /
    • 1998
  • A quadrature RF coil has been developed for 0.3 Tesla permanent MRI systems. The quadrature RF coil is composed of a solenoid coil and a saddle shaped coil. To minimize the coupling ratio between the two coils, each coil is serially connected to a small extra loop. and the small loops are magnetically coupled to each other. By deliberately adjusting relative positions of the small loops, we have decreased the coupling ratio up to -30dB.

  • PDF

Noise Reduction in an Inductively Coupled RFID System Using a Dual Coil Antenna (유도결합 RFID 시스템에서 이중 코일 안테나를 이용한 잡음의 감소)

  • Lee, Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.648-655
    • /
    • 2007
  • In this paper, we introduce a dual coil antenna which is useful for reducing the effects of radio frequency noise in an RFID system. A dual coil antenna is composed of two identical coils that are connected in series. The noise voltages in the two coils almost disappear when they are added because the magnitudes are equal and the polarities are opposite. The noise in an RFID reader with a dual coil antenna was 15 dB lower than that with a single coil antenna.

FDTD 방법을 이용한 3T MRI용 RF 코일의 해석

  • 이종오;박준서;명노훈;박부식;김용권;정성택
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.976-983
    • /
    • 2000
  • In this paper, Bridcage type RF coils used widely as RF coils for MRI and its applicable type, spiral type RF coil are analyzed and designed using FDTD method. In low tesla (IT, 1.5T) MRI system, several tools have been used for the analysis and design of the RF coils for MRI. This includes, so-called, LC equivalent circuit method for predicting the resonance frequency of the coil and the Biot-Savart law to determine the field distribution within the coil. Both of the circuit analysis and Biot-Savart law are low frequency techniques. Therefore, at high frequency applications, the circuit model approximation breaks down because the coil geometry is a significant fraction of the wavelength. In this paper, we analyzed and designed RF coils for 3T MRI using FDTD method. This method is a full wave analysis and very accurate at low and high frequencies. Also, this RF coils are actually fabricated and FDTD models of RF coils for MRI are proven.

  • PDF

Effects of RF pulsing and axial magnetic field onionized magnetron sputtering

  • Joo. Junghoon
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.133-138
    • /
    • 1998
  • To enhance the ionization level of I-PVD and reduce the coil voltage two approaches were tried and as a diagnostic, optical emission spectroscopy and impedance analysis of the plasma was done with a range of Ar pressures and RF power along with XRD analysis of deposited Ag films. RF sputtering power was pulsed with various on/off time scales to recover the ICP quenched by sputtered metals. This in average enhances the ionization of the sputtered atoms with 10 ms/10 ms and 100 ms/100ms pulse on/off time duration and gives higher (200) preferred orientation over (111) in deposited Ag films. Secondly, Small axial B field about 8G remarkably reduced RF coil sputtering and showed scaled relationship between RF power and magnetic field strength for optimal process condition. From OES of Ar0 and Ar+, wave-like dispersion structure appeared and reduced the coil voltage about 20% at very weak field strength of 8G. This should be studied further to have nay relation with low mode helicon wave launching.

  • PDF

Development of Solenoid RF Coil for Animal Imaging in 3T High Magnetic Field MRI (고자장 3T MRI 장비에서 동물영상을 위한 솔레노이드 RF코일 개발)

  • Lee, Hong-Seok;Woo, Dong-Cheol;Min, Kwang-Hong;Kim, Yong-Kwon;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.20-26
    • /
    • 2007
  • Purpose : The purpose of the present study was to develop and optimize solenoid coil for animal- model in 3 T MRI system and investigate and compare with the birdcage coil concerning the image quality with the various parameters such as SNR and Q-factor. Materials and Methods : Solenoid coil for animal-model was made on the acryl structure (diameter 4 cm, length 10 cm) 3 times-winding cooper tape of width 2 cm, thickness 0.05 cm and length 10 cm with 2 cm interval between winded tapes. Capacitors from 2 pF to 100 pF were used, and the solenoid coil was designed for receiver only coil. Results : SNR of the developed solenoid was 985 in CuSO4 0.7 g/L and 995 in rat experiment. Q-factor was 84-89 in unloaded condition and 203-206 in loaded condition. Conclusion : The resolution of the image obtained from solenoid was relatively higher than that of the conventional birdcage coil. In addition, the homogeneity of RF field by coil simulation was significantly excellent. The present study demonstrated that the solenoid coil could be useful to obtain small animal images with better contrast, resolution, visibility than images from birdcage.

  • PDF

In Vivo High Resolution NMR Imaging by Using Surface Gradient Coil (평면 경사자계 코일을 사용한 고분해능 NMR 생체 영상법에 관한 연구)

  • Yi, Jeong-Han;Oh, Woo-Jin;Cho, Zang-Hee
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.48-51
    • /
    • 1990
  • A new in vivo high resolution imaging method which is performed with a newly developed three channel surface gradient coil (SGC) is described. The surface gradient coil can produce more than an order of magnitude stronger gradient fields with good linearity within a limited imaging region. To increase the signal to noise ratio (SNR), we have developed an RF coil integrated surface gradient coil set. In this paper, the geometrical structures and characteristics of the proposed surface gradient coil are discussed and experimentally obtained high resolution images ($50\;{\mu}m$ to $100\;{\mu}m$) of a water filled phantom and a human volunteer's knee using the new surface RF coil integrated SGC set are presented for the demonstration of the in vivo high resolution imaging capability of the new imaging method.

  • PDF

Improvement of a 4-Channel Spiral-Loop RF Coil Array for TMJ MR Imaging at 7T (7T 악관절 MRI를 위한 4 채널 스파이럴 RF 코일의 성능개선)

  • Kim, Kyoung-Nam;Kim, Young-Bo;Cho, Zang-Hee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.103-114
    • /
    • 2012
  • Purpose : In an attempt to further improve the radiofrequency (RF) magnetic ($B_1$) field strength in temporomandibular joint (TMJ) imaging, a 4-channel spiral-loop coil array with RF circuitry was designed and compared with a 4-channel single-loop coil array in terms of $B_1$ field, RF transmit (${B_1}^+$), signal-to-noise ratio (SNR), and applicability to TMJ imaging in 7T MRI. Materials and Methods: The single- and 4-channel spiral-loop coil arrays were constructed based on the electromagnetic (EM) simulation for the investigation of $B_1$ field. To evaluate the computer simulation results, the $B_1$ field and ${B_1}^+$ maps were measured in 7T. Results: In the EM simulation result and MRI study at 7T, the 4-channel spiral-loop coil array found a superior $B_1$ performance and a higher ${B_1}^+$ profile inside the human head as well as a slightly better SNR than the 4-channel single-loop coil array. Conclusion: Although $B_1$ fields are produced under the influence of the dielectric properties of the subject rather than the coil configuration alone at 7T, each RF coil exhibited not only special but also specific characteristics that could make it suited for specific application such as TMJ imaging.

Design of Low Field RF Coil for Open MRI System by Electric Dipole Radiation

  • 김경락;양형진;오창현
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.174-174
    • /
    • 2001
  • Purpose: Dimensions of body RF coil composed of 4 rectangular loops for low field open MRI hav been optimized. The design result shows the field inhomogeneity of B1 field below 1.5 dB in the 25 cm DSV can be achieved. Method: Our low field RF coil is composed of 4 rectangular strip loops that assumed to b located at both the bottom and top sides of permanent magnet. All the loops have identica dimensions and current amplitude. First, the inductance of a loop is calculated. Second, the current distribution on the coil strip is calculated by using finite difference time doma method (FDTD). It takes as much as 4 days in FDTD simulation for low frequency RF field That's why the electrical dipole radiation method is used for simulation. With the curren distribution obtained using the FDTD simulation, for various dimensional parameters th magnetic field has been calculated by electric dipole radiation method, where the curren elements are regarded as electric dipole radiation sources. The field pattern from electri dipole radiation is almost same as that from FDTD simulation. Also, it is same as that fro the result using the Viot-Savart equation, for far tone radiation term becomes zero and th Bl field amplitude of near one radiation is the same as the B field due to static current The field homogeneity is calculated in the 25 cm BSV.

  • PDF