• Title/Summary/Keyword: RF co-sputtering

Search Result 302, Processing Time 0.028 seconds

Growth of p-ZnO by RF-DC magnetron co-sputtering (RF-DC magnetron co-sputtering법에 의한 p-ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.277-280
    • /
    • 2004
  • p-ZnO films have been grown on (0001) sapphire substrates by RF-DC magnetron co-sputtering. The p-ZnO single crystalline thin films of the thickness about 120 nm were grown successfully. The dopant (Aluminum) was sputtered simultaneously from Al metal target by DC sputtering during rf-magnetron sputtering of ZnO at the substrate temperatures of $400^{\circ}C$ and $600^{\circ}C$ respectively. The crystallinity and optical properties of as-grown P-ZnO films have been characterized.

Fabrication and Electrical Properties of High Reliability Ceramic Capacitor by RF Sputtering (RF Sputtering을 이용한 고신뢰성 Ceramic Capacitor의 제조 및 전기적 특성)

  • Lee, Chang-Bae;Yoon, Jung-Rag;Lee, Kyong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.300-300
    • /
    • 2010
  • Ceramic capacitor의 에너지내량을 향상시켜 제품의 신뢰성을 높이고자 RF Sputtering을 이용하여 외부전극을 형성하였다. 본 연구에서는 Target의 종류, 증착 시간 및 열처리 유/무에 따른 Ceramic capacitor의 전기적 특성 및 미세구조를 분석하여 최적조건을 확립하였으며, 최적 증착 조건으로 제작한 Ceramic capacitor의 에너지내량을 측정하였다. Target은 Ni target과 Cu target을 사용하였으며, Sputtering 시간은 10, 30, 60분으로 하였다. Sputtering 시간에 따른 Ceramic capacitor의 용량 특성과 손실은 큰 차이가 없었지만, Wire 연결시 Sputtering 시간에 따라 납땜성의 차이가 나타났으며, 증착 시간과 열처리 유/무에 따른 에너지내량의 변화를 확인하였다.

  • PDF

Fabrication of $MgB_2$ Thin Films by rf-sputtering (rf-sputtering을 이용한 $MgB_2$ 박막 제작)

  • 안종록;황윤석;이순걸
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.153-156
    • /
    • 2003
  • We have studied fabrication of $MgB_2$ thin film on $SrTiO_3$ (001) and r-cut $A1_2$$O_3$ substrates by rf magnetron sputtering method using and $ MgB_2$ single target and two targets of Mg and B, respectively. Based on P -T phase diagram of $MgB_2$ and vapor pressure curves of Mg and B, a three-step process was employed. B layer was deposited at the bottom to enhance the film adhesion to the substrate. Secondly, co-sputtering of Mg and B was done. Finally, Mg was sputtered on top to compensate fur the loss of Mg during annealing. Subsequently, $MgB_2$ films were in-situ annealed in various conditions. The sample fabricated using the three-step process showed $T_{c}$ of 24 K and formation of superconducting $MgB_2$ phase was confirmed by XRD spectra. In case of co-sputtering deposition, $T_{c}$ depended on annealing time and argon pressure. However, those made by single-target sputtering showed non-superconducting behavior or low transition temperature, at best.est.

  • PDF

The Characteristic of Formation CoSi2/Si Thin Film by the RF-Sputtering Method (RF-Sputtering법에 의한 CoSi2/Si 박막 형성에 관한 특성)

  • Cho, Geum-Bae;Lee, Kang-Yoen;Choi, Youn-Ok;Kim, Nam-Oh;Jeong, Byeong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1255-1258
    • /
    • 2010
  • In this paper, the $CoSi_2$ thin films with thicknesses of about $5{\mu}m$ were deposited on n-type silicon (111) substrates by RF magnetron sputtering method using a $CoSi_2$ target (99.99%). The flow rate of argon of 50 sccm, substrate temperature of $100^{\circ}C$, RF power of 60 watts, deposition time of 30 minutes, and the vacuum of $1\times10^{-6}$ Torr. The annealing treatments of the $CoSi_2$ thin film were performed from 500, 700 and $900^{\circ}C$ for 1h in air ambient by an electric furnace. In order to investigate the $CoSi_2$ thin film X-ray diffraction patterns were measured using the X-ray diffractometer (XRD). The structure of the thin films were investigated by using scanning the electron microscope (SEM) were used for review. The surface morphology of the thin films was measured with a atomic force microscopy (AFM). Temperature dependence of sheet resistivity and property of Hall effect was measured in the $CoSi_2$ thin film.