• Title/Summary/Keyword: RF Magnetron sputtering

Search Result 1,633, Processing Time 0.027 seconds

Hydrophobic Properties of PTFE Thin Films Deposited on Glass Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 유리 기판 위에 증착된 PTFE 박막의 발수 특성)

  • Kim, Hwa-Min;Kim, Dong-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.886-890
    • /
    • 2010
  • The polytetrafluoroethylene (PTFE) films are deposited on glass using conventional rf-magnetron sputtering method. Their hydrophobic properties are investigated for application as an anti-fouling coating layer on the screen of displays. It is found that the hydrophobicity of PTFE films largely depends on the sputtering conditions, such as Ar gas flow and deposition time during sputtering process. These conditions are closely related to the deposition rate or thickness of PTFE film. Thus, it is also found that the deposition rate or the film thickness affects sensitively the geometrical morphology formed on surface of the rf-spluttered PTFE films. In particular, the PTFE film with 1950 nm thickness deposited for 30 minute at rf-power 50 W shows a very excellent optical transmittance of over 90% and a good anti-fouling property and a good durability.

Deposition Characteristics of AlN Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링에 의해 제조된 AlN 박막의 증착 특성)

  • Song, Jong-Han;Chun, Myoung-Pyo;Choi, Duck-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.969-973
    • /
    • 2012
  • AlN thin films were deposited on p-type Si(100) substrates by RF magnetron sputtering method. This study showed the change of the preferential orientation of AlN thin films deposition with the change of the deposition conditions such as sputtering pressure and Ar/N2 gas ratio in chamber. It was identified by X-ray diffraction patterns that AlN thin film deposited at low sputtering pressure has a (002) orientation, however its preferred orientation was changed from the (002) to the (100) orientation with increasing sputtering pressure. Also, it was observed that the properties of AlN thin films such as thickness, grain size and surface roughness were largely dependent on Ar/$N_2$ gas ratio and a high quality thin film could be prepared at lower nitrogen concentration. AlN thin films were investigated relationship between preferential orientation and deposition condition by using XRD, FE-SEM and PFM.

Properties of Silicon-deposited Meta-aramid Fabrics by RF Magnetron Sputtering (RF 마그네트론 스퍼터링에 의해 실리콘이 증착된 메타아라미드 직물의 성질 분석)

  • Park, Jong Hyeon;Lee, Sun Young;Kim, Chun Su;Kang, Song Hee;Kim, Eui Hwa;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • Meta-aramid fabric has been widely used as the reinforcement of composites due to its high flame resistance and tearing strength. Functionality such as abrasion resistance of fabric is very important for specialty fabrics used in car racing suits. In this study, to improve abrasion resistance property of meta-aramid fabric, silicon deposition was conducted by utilizing RF magnetron sputtering. The sputtering process parameters effects were investigated as sputtering power and substrate temperature. The obtained results suggest that the silicon deposition on the meta-aramid fabric has obvious effect upon increasing the abrasion resistance, the thermal insulation and the electric resistance condition for silicon deposition was established. In conclusion, the results of this study have made it possible to manufacture meta-aramids with higher abrasion strength.

Synthesis of nano-crystalline Si films on polymer and glass by ICP-assisted RF magnetron sputtering

  • Shin, Kyung-S.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.203-203
    • /
    • 2010
  • Nano-crystalline Si thin films were deposited on polymer and glass by inductively coupled plasma (ICP) - assisted RF magnetron sputtering at low temperature in an argon and hydrogen atmosphere. Internal ICP coil was installed to increase hydrogen atoms dissociated by the induced magnetic field near the inlet of the working gases. The microstructure of deposited films was investigated with XRD, Raman spectroscopy and TEM. The crystalline volume fraction of the deposited films on polymer was about 70% at magnetron RF power of 600W and ICP RF power of 500W. Crystalline volume fraction was decreased slightly with increasing magnetron RF power due to thermal damage by ion bombardment. The diffraction peak consists of two peaks at $28.18^{\circ}$ and $47.10^{\circ}\;2{\theta}$ at magnetron RF power of 600W and ICP RF power of 500W, which correspond to the (111), (220) planes of crystalline Si, respectively. As magnetron power increase, (220) peak disappeared and a dominant diffraction plane was (111). In case of deposited films on glass, the diffraction peak consists of three peaks, which correspond to the (111), (220) and (311). As the substrate temperature increase, dominant diffraction plane was (220) and the thickness of incubation (amorphous) layer was decreased.

  • PDF

Electrical properties of ZnO/sapphire piezo-electric transducer by RF magnetron sputtering (RF magnetron sputtering으로 제작한 ZnO/sapphire 압전 변환기의 전기적인 특성에 관한 연구)

  • 이종덕;정규원;고상춘;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.22-25
    • /
    • 1995
  • In this paper, the physical characteristics of piezoelectric transducer which generates acoustic weve at microwave frequency were theoretically analized. We found that increasing electrode thickness is showed large distorthion on bandwidth. ZnO thin film were desposited by RF magnetron sputtering method. considering the sputtering parameters. Thickness of the desposited ZnO was 3.9 $\mu\textrm{m}$. In this experiment, we get that resistivity is 12.196${\times}$109 [cm$\Omega$], that resonance frequency is 827.47MHz Measuring insertion loss, we ascertained to possibility of transducer application for microwave frequency.

  • PDF