• 제목/요약/키워드: RF Energy harvesting system

검색결과 28건 처리시간 0.023초

전자기유도방식의 에너지 하베스팅을 이용한 자가발전 무선 비상호출기 구현 연구 (Feasibility study for the self powered wireless emergency call button using electromagnetic energy harvesting mechanism)

  • 김일중;최연석
    • 대한안전경영과학회지
    • /
    • 제16권2호
    • /
    • pp.111-119
    • /
    • 2014
  • This paper describes the design and implementation of a electromagnetic energy harvesting mechanism and electronic circuit for autonomous emergency call system. This analysis results show the power output of the proposed harvesting mechanism and circuit up to max power output 5V and it can hold up to 65 msec of the power generation and 10msec of the RF transmission. Based on the these testing results, the implementation of autonomous emergency call device without battery power or any external power source is feasible.

압전 후막의 전단 변형을 이용한 나선형 MEMS 발전기 (A Novel Spiral Type MEMS Power Generator with Shear Mode Piezoelectric Thick Film)

  • 송현철;김상종;문희규;강종윤;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.219-219
    • /
    • 2008
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for ubiquitous sensor networks (USN). There are several power generating methods such as thermal gradients, solar cell, energy produced by human action, mechanical vibration energy, and so on. Most of all, mechanical vibration is easily accessible and has no limitation of weather and environment of outdoor or indoor. In particular, the piezoelectric energy harvesting from ambient vibration sources has attracted attention because it has a relative high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system hassome drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure. In this case, the energy harvester has a lower natural frequency under 200 Hz than a normal cantilever structure. Moreover, it has higher an energy conversion efficient because shear mode ($d_{15}$) is much larger than 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate as a standalone power generator for USN.

  • PDF

Joint Resource Allocation Scheme for OFDM Wireless-Powered Cooperative Communication Networks

  • Liang, Guangjun;Zhu, Qi;Xin, Jianfang;Pan, Ziyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1357-1372
    • /
    • 2017
  • Energy harvesting techniques, particularly radio frequency energy harvesting (RF-EH) techniques, which are known to provide feasible solutions to enhance the performance of energy constrained wireless communication systems, have gained increasing attention. In this paper, we consider a wireless-powered cooperative communication network (WPCCN) for transferring energy in the downlink and forwarding signals in the uplink. The objective is to maximize the average transmission rate of the system, subject to the total network power constraint. We formulate such a problem as a form of wireless energy transmission based on resource allocation that searches for the joint subcarrier pairing and the time and power allocation, and this can be solved by using a dual approach. Simulation results show that the proposed joint optimal scheme can efficiently improve system performance with an increase in the number of subcarriers and relays.

Battery-less Pork Freshness Monitoring Based on High-Efficiency RF Energy Harvesting

  • Nguyen, Nam Hoang;Lam, Minh Binh;Chung, Wan-Young
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.293-302
    • /
    • 2020
  • Food safety has emerged as a growing concern for human health in recent times. Consuming contaminated food may lead to serious health problems, and therefore, a system for monitoring food freshness that is both non-detrimental to the quality of food and highly accurate is required to ensure that only high-quality fresh food packages are provided to the customers. This paper proposes a method to monitor and detect food quality using a compact smart sensor tag. The smart tag is composed of three ultra-low-power sensors, which monitor four major indicators of food freshness: temperature, humidity, and the concentrations of ammonia and hydrogen sulfide gases. An RF energy scavenging circuit is integrated into the smart sensor tag to harvest energy from radio waves at a high frequency of 13.56 MHz to supply sufficient power to the tag. Experimental results show that the proposed energy harvester can efficiently obtain energy at a distance of approximately 40 cm from a 4 W reader. In addition, the proposed smart sensor tag can operate without any battery, thereby eliminating the requirement of frequent battery replacement and consequently decreasing the cost. Meanwhile, the freshness of preserved pork is continuously monitored under two conditions--room temperature and refrigerator temperature--both of which are the most common temperatures under which food is generally stored. The food-monitoring experiments are conducted over a period of one week using the proposed battery-less tag. Based on the experimental results, the food assessment is classified into four categories: fresh, normal, low, and spoiled.

Electric Field Energy Harvesting Powered Wireless Sensors for Smart Grid

  • Chang, Keun-Su;Kang, Sung-Muk;Park, Kyung-Jin;Shin, Seung-Hwan;Kim, Hyeong-Seok;Kim, Ho-Seong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.75-80
    • /
    • 2012
  • In this paper, a new energy harvesting technology using stray electric field of an electric power line is presented. It is found that energy can be harvested and stored in the storage capacitor that is connected to a cylindrical aluminum foil wrapped around a commercial insulated 220 V power line. The average current flowing into 47 ${\mu}F$ storage capacitor is about 4.53 ${\mu}A$ with 60 cm long cylindrical aluminum foil, and it is possible to operate wireless sensor node to transmit RF data every 42 seconds. The harvested average power is about 47 ${\mu}W$ in this case. Since the energy can be harvested without removing insulating sheath, it is believed that the proposed harvesting technology can be applied to power the sensor nodes in wireless ubiquitous sensor network and smart grid system.

A NOVEL SPIRAL TYPE MEMS POWER GENERATOR WITH SHEAR MODE

  • Song, Hyun-Cheol;Kang, Chong-Yun;Yoon, Seok-Jin
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술회의 초록집
    • /
    • pp.7-7
    • /
    • 2010
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for Ubiquitous Sensor Networks(USN). In particular, the piezoelectric energy harvesting from ambient vibration sources has intensively researched because it has a relatively high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system has some drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure as shown in the figure. The natural frequency of a cantilever could be decreased to the usable frequency region (under 300 Hz) because the natural frequency depends on the length of a cantilever. In this study, the natural frequency of the energy harvester was a lower than a normal cantilever structure and sufficiently controllable in 50 - 200 Hz frequency region as adjusting weight of a proof mass. Moreover, the MEMS energy harvester had a high energy conversion efficiency using a shear mode ($d_{15}$) is much larger than a 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate for a standalone power generator for USN.

  • PDF

Outage Analysis and Optimization for Time Switching-based Two-Way Relaying with Energy Harvesting Relay Node

  • Du, Guanyao;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권2호
    • /
    • pp.545-563
    • /
    • 2015
  • Energy harvesting (EH) and network coding (NC) have emerged as two promising technologies for future wireless networks. In this paper, we combine them together in a single system and then present a time switching-based network coding relaying (TSNCR) protocol for the two-way relay system, where an energy constrained relay harvests energy from the transmitted radio frequency (RF) signals from two sources, and then helps the two-way relay information exchange between the two sources with the consumption of the harvested energy. To evaluate the system performance, we derive an explicit expression of the outage probability for the proposed TSNCR protocol. In order to explore the system performance limit, we formulate an optimization problem to minimize the system outage probability. Since the problem is non-convex and cannot be directly solved, we design a genetic algorithm (GA)-based optimization algorithm for it. Numerical results validate our theoretical analysis and show that in such an EH two-way relay system, if NC is applied, the system outage probability can be greatly decreased. Moreover, it is shown that the relay position greatly affects the system performance of TSNCR, where relatively worse outage performance is achieved when the relay is placed in the middle of the two sources. This is the first time to observe such a phenomena in EH two-way relay systems.

Physical Layer Secrecy Performance of RF-EH Networks with Multiple Eavesdroppers

  • Truong, Tien-Vu;Vo, Nhan-Van;Ha, Dac-Binh;Tran, Duc-Dung
    • Journal of information and communication convergence engineering
    • /
    • 제14권3호
    • /
    • pp.171-176
    • /
    • 2016
  • In this study, we investigate the physical layer secrecy performance of RF energy harvesting (EH) networks over Rayleigh fading channels. The RF-EH system considered here consists of one power transfer station, one source, one destination, and multiple passive eavesdroppers. The source harvests energy from the power transfer station and transmits the information to the destination by using a time switching-based relaying protocol. The eavesdroppers try to extract the transmitted information without an active attack. By using the statistical characteristics of the signal-to-noise ratio (SNR), the exact closed-form expressions of the existence probability of the secrecy capacity and the secrecy outage probability are derived. Further, we analyze the secrecy performance of the system with respect to various system parameters, such as the location of the system elements and the number of eavesdroppers. Finally, the equivalent Monte Carlo simulation results are provided to confirm the correctness of our calculations.

Time Switching for Wireless Communications with Full-Duplex Relaying in Imperfect CSI Condition

  • Nguyen, Tan N.;Do, Dinh-Thuan;Tran, Phuong T.;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4223-4239
    • /
    • 2016
  • In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.

다중모드 회로망 분석을 이용한 광대역 혼 안테나의 효율적인 설계 (Effective Design of the Broadband Horn Antenna Using Multi-mode Network Analysis)

  • 문정익;조인귀;김성민
    • 전기전자학회논문지
    • /
    • 제16권4호
    • /
    • pp.297-303
    • /
    • 2012
  • 본 논문에서는 다중대역 렉테나가 장착된 RF 에너지 수집 시스템의 성능 확인에 사용되는 광대역 이중리지 혼 안테나를 다중모드 회로망 분석을 이용하여 효율적으로 설계하는 방법을 제안하고 있다. 다중모드 회로망 분석을 이용하여 천이장치와 혼에 대한 각각의 고차모드 산란 파라미터를 얻어 설계에 적용하였다. 그 결과 기존 방법에 비해 계산시간이 많이 단축되었으며 안테나의 정재파비를 계산한 결과 전자기장 해석을 적용한 것과 거의 유사하였으며, 측정치와 높은 일치도를 보였다. 설계된 광대역 혼 안테나는 660~6360 MHz 대역폭과 6~13.7 dBi의 최대 방사 이득을 가진다.