• Title/Summary/Keyword: RF Controller

Search Result 125, Processing Time 0.023 seconds

A small Inverted-F Antenna with adjustable characteristics using lumped elements (집중소자를 이용하여 특성 조절이 가능한 소형 역-F 안테나)

  • Yoo, Jin-Ha;Do, Sang-In;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.646-651
    • /
    • 2013
  • In this paper, a small inverted-F antenna with adjustable characteristics is proposed with use of lumped elements, capacitor and resistor. Capacitor is inserted between end of the antenna and ground for size reduction and tuning of resonant frequency. On the other hand, $0{\Omega}$ resistor is replaced as the short line connected to ground. The movement of short point due to use of $0{\Omega}$ resistor results in providing variation of input impedance. Therefore optimum characteristics can be obtained only by proper choice of capacitor and short point without redesign of it's geometry. In order to check the validity, the proposed antenna is designed and fabricated for 2.4 GHz frequency band, and then is applied to a product of Zigbee wireless remote controller. As a result, the size of applied antenna is $8.5{\times}4.5mm^2$ and it is observed that the measured bandwidth and antenna gain are 150 MHz and 2 dBi respectively without redesign of the antenna.

Design of UHF Band Microstrip Antenna for Recovering Resonant Frequency and Return Loss Automatically (UHF 대역 공진 주파수 및 반사 손실 오토튜닝 마이크로스트립 안테나 설계)

  • Kim, Young-Ro;Kim, Yong-Hyu;Hur, Myung-Joon;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.219-232
    • /
    • 2013
  • This paper presents a microstrip antenna which recovers its resonant frequency and impedance shifted automatically by the approach of other objects such as hands. This can be used for telemetry sensor applications in the ultrahigh frequency(UHF) industrial, scientific, and medical(ISM) band. It is the key element that an frequency-reconfigurable antenna could be electrically controlled. This antenna is miniaturized by loading the folded plates at both radiating edges, and varactor diodes are installed between the radiating edges and the ground plane to control the resonant frequency by adjusting the DC bias asymmetrically. Using this voltage-controlled antenna and the micro controller peripheral circuits of reading the returned level, the antenna is designed and fabricated which recovers its resonant frequency and impedance automatically. Designed frequency auto recovering antenna is conformed to be recovered within a few seconds when the resonant frequency and impedance are shifted by the approach of other objects such as hand, metal plate, dielectric and so on.

Web-based Measurement of ECU Signals on Vehicle using Embedded Linux

  • Choi, Kwang-Hun;Lee, Lee;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.138-142
    • /
    • 2004
  • In this paper, we present a new method for monitoring of ECU's sensor signals of vehicle. In order to measure the ECU's sensor signals, the interfaced circuit is designed to communicate ECU and the Embedded Linux is used to monitor communication result through Web the Embedded Linux system and this system is said "ECU Interface Part". In ECU Interface Part the interface circuit is designed to match voltage level between ECU and SA-1110 micro controller and interface circuit to communicate ECU according to the ISO, SAE communication protocol standard. Because Embedded Linux does not allow to access hardware directly in application level, anyone who wants to modify any low level hardware must develop device driver. To monitor ECU's sensor signals the most important thing is to match serial level between ECU and ECU Interface Part. It means to communicate correctly between two hardware we need to match voltage and signal level, and need to match baudrate. The voltage of SA-1110 is 0 ${\sim}$ +3.3V and ECU is 0 ${\sim}$ +12V and, ECU's communication Line K does multiple operation so, the interface circuit is used to match voltage and signal level. In Addition to ECU's baudrate is 10400bps, it's not standard baudrate in computer environment. So, we need to develop a device driver to control the interface circuit, and change baudrate. To monitor ECU's sensor signals through web there's a network socket program is working in Embedded Linux. It works as server program and manages user's connections and commands. Anyone who wants to monitor ECU's sensor signals he just only connect to Embedded Linux system with web browser then, Embedded Linux webserver will return the ActiveX webbased measurement software. It works in web browser and inits ECU, as a result it returns sensor signals through web. All the programs are developed with GCC(GNU C Compiler) and, webbased measurement software is developed with Borland C++ Builder.

  • PDF

A Low-pass filter design for suppressing the harmonics of 2.4GHz RFID tag (2.4GHz RFID 태그용 고조파 억제를 위한 저역통과필터의 설계)

  • Cho, Young Bin;Kim, Byung-Soo;Kim, Jang-Kwon
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.59-64
    • /
    • 2002
  • In the RFID system using ISM-band, The tag mounted at the object has used the DC power by rectifying the RF signals of the small antenna for operating the micro-controller and memory. The performance of the tag would be reduced because of the second harmonics generated by the nonlinearity of the semiconductor and the spurious signal excited the high order mode of the antenna. This paper has realized the novel type low-pass filter with "the Stub-I type DGS slot structure" to improve the efficiency of the tag by suppressing the harmonics. The optimized frequency character at the pass-band/stop-band has obtained by tuning the stub width and slit width of I type slot. The measured result of the LPF has the cutoff frequency 3.25 GHz, the insertion loss about -0.29~-0.3 dB at pass-band 2.4 GHz~2.5 GHz, the return loss about -27.688~-33.665 dB at pass-band with a good performance, and the suppression character is about -19.367 dB at second harmonics frequency 4.9 GHz. This DGS LPF may be applied the various application as the RFID, WLAN to improve the efficiency of the system by suppressing the harmonics and spurious signals. 

SURFACE CHANCE OF EXTERNAL HEXAGON OF IMPLANT FIXTURE AND INTERNAL HEXAGON OF ABUTMENT AFTER REPEATED DELIVERY AND REMOVAL OF ABUTMENT (지대주의 반복적인 착탈에 따른 임플랜트 고정체의 external hexagon과 지대주 internal hexagon의 변화에 관한 연구)

  • Jung Seok-Won;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.528-543
    • /
    • 2005
  • Statement of problem: Repeated delivery and removal of abutment cause some changes such as wear, scratch or defect of hexagonal structure. It may increase the value of rotational freedom(RF) between hexagonal structures. Purpose: The purpose of this study was to evaluate surface changes and rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment after repeated delivery and removal under SEM and toolmaker's microscope. Materials and methods: Implant systems used for this study were 3i and Avana. Seven pail's of implant fixture, abutment and abutment screws for each system were selected and all fixtures were perpendicularly mounted in liquid unsaturated polyesther with dental surveyor. Each one was embedded beneath the platform of fixture. Surfaces of hexagonal structure before repeated closing and opening of abutment were observed using SEM and rotational freedom was measured by using toolmaker's microscope. Each abutment was secured to the implant future by each abutment screw with recommended torque value using a digital torque controller and was repeatedly delivered and removed by 20 times respectively. After experiment, evaluation for the change of hexagonal structures and measurement of rotational freedom were performed. Result : The results were as follows; 1. Wear of contact area between implant fixture and abutment was considerable in both 3i and Avana system. Scratches and defects were frequently observed at the line-angle of hexagonal structures of implant fixture and abutment. 2. In the SEM view of the external hexagon of implant fixture, the point-angle areas at the corner edge of hexagon were severely worn out in both systems. It was more notable in the case of 3i systems than in that of Avana systems. 3. In the SEM view of the internal hexagon of abutment, Gingi-Hue abutment of 3i systems showed severe wear in micro-stop contacts that were machined into the corners to prevent rotation and cemented abutment of Avana systems showed wear in both surface area adjacent to the corner mating with external hexagon of implant fixture. 4 The mean values of rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment were 0.48$\pm$0.04$^{\circ}$ in pre-tested 3i systems and 1.18$\pm$0.25$^{\circ}$ after test, and 1.80$\pm$0.04$^{\circ}$ in pre-tested Avana systems and 2.61$\pm$0.16$^{\circ}$ after test. 5. Changes of rotational freedom after test shouted statistical)y a significant increase in both 3i and Avana systems(P<0.05, paired t-test). 6. Statistically, there was no significant difference between amount of increase in the rotational freedom of 3i systems and amount of increase in that of Avana ones(P>0.05, unpaired t-test). Conclusion: Conclusively, it was considered that repeated delivery and remove of abutment by 20 times would not have influence on screw joint stability. However, it caused statistically the significant change of rotational freedom in tested systems. Therefore, it is suggested that repeated delivery and remove of abutment should be minimal as possible as it could be and be done carefully Additionally, it is suggested that the means or treatment to prevent the wear of mating components should be devised.