• Title/Summary/Keyword: RF Beamforming

Search Result 27, Processing Time 0.024 seconds

Antenna Selection Scheme for BD Beamforming-based Multiuser Massive MIMO Communication Systems (BD 빔포밍을 이용한 다중 사용자 기반 거대 안테나 통신 시스템용 안테나 선택 기법)

  • Ban, Tae-Won;Jung, Bang Chul;Park, Yeon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.433-436
    • /
    • 2013
  • Massive MIMO communication system with huge antennas has been attracting intensive attention as one of key technologies to increase the spectral efficiency. Many previous studies investigated single user Massive MIMO scheme in cellular downlink. Recently, however, intensive researches on multiuser-based Massive MIMO are performed to overcome the problem caused by the limited number of antennas in mobile stations. Although the Massive MIMO scheme based on huge number of antennas inevitably causes hardware and computational complexity in baseband and radio frequency (RF) elements, the problem can be mitigated without serious performance degradation by limiting the number of baseband and RF elements below the number of transmit antennas of base station and opportunistically selecting transmit antennas according to channel states, where the number of selected antennas corresponds to the number of baseband and RF elements in base station. Accordingly, this paper proposes a simple antenna selection scheme for multiuser-based Massive MIMO systems. Our simulation results indicate that the proposed antenna selection scheme can achieve comparable performance to the conventional scheme without antenna selection.

  • PDF

Implementation of cusomized RFID receiver module for In-VIVO wireless transmission (체내심부 무선전송을 위한 맞춤형 RFID 수신 모듈 구현)

  • An, Jinyoung;Sa, Gi-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.55-57
    • /
    • 2022
  • In this study, a customized semi-passive RFID receiver module was implemented for in-VIVO deep tissue photo-therapy. A novel wireless technique is required due to a limitation of RF communication in body environment, as internal body has a complex structure such as, skin, fat, skeleton, water, and so on. Recently, coherently incoherent beamforming (CIB) based on RFID was introduced and it is able to transmit wireless signal with high reliability under the incoherent condition such as in-VIVO deep tissue. The proposed miniature photo capsule based on RFID consists of miniature controller, ultra small LED array and wireless RFID chip. RF Reader can access with standard RFID protocol (ISO 18000-6c) using UHF RFID antenna, a control command is wirelessly writtern on USER Bank memory. With received control command, therapy LED array dims with mulilevel under timer control. The signal process of designed RFID photo therapy capsule is analyzed and evaluated under the various environments in detailed.

  • PDF

The Design of Smart Antenna Structures for RF Repeater (이동통신 중계기용 스마트 안테나 구조 설계)

  • Cho, Dae-Young;Kim, Kye-Won;Lee, Seung-Goo;Kim, Min-Sang;Kim, Kil-Yung;Park, Byeong-Hoon;Ko, Hak-Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2013
  • The amplification rate of a RF repeater is limited by the feedbacked signals from the same repeater. And an ICS (Interference Cancellation System) repeater has been developed to remove the feedbacked signals. The ICS repeater estimates the amplitudes and the phases of the feedbacked signals and removes the estimated feedback signals from the received input signal of the repeater. However, it requires lots of hardware complexity and this leads to the increase the cost of the repeater. Moreover, the ICS repeater can not solve the pilot pollution problems. To solve these problems, we have studied the implementation and adaptation of smart antenna system for RF repeaters. We have designed a smart antenna system with a switching beam structure in order to reduce the hardware and computational complexity. After analyzing the proposed smart antenna system, we found out that the amplification rate of the proposed repeater increases 23dB compare to the amplification rate of ICS repeater and the output SINR increases 6dB compare to the ICS repeater.

Millimeter Wave Energy Transfer based on Beam Steering (밀리미터파를 이용한 빔 조향 기반의 에너지 전송 기술)

  • Han, Yonggue;Jung, Sangwon;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.10-15
    • /
    • 2017
  • Feedback burden of a full-digital energy beamforming, which is known as the optimal precoding scheme for radio frequency (RF) energy transfer, is huge because it uses a vector quantization for a channel feedback. To reduce the feedback burden, we consider a beam steering based wireless energy transfer, which uses a scalar quantization. Researches related to the beam steering based wireless energy transfer have been studied in special channel model with an assumption of full channel state information at the transmitter. In this paper, we analyze the beam steering scheme compared with the full-digital energy beamforming for practical channel models with channel estimation errors. According to characteristics of the millimeter wave channel, the number of antennas of the base station and the user, the distance between them, and channel estimation errors, we simulate the performance of the beam steering scheme and analyze reasons why.

Active Phased Array Antenna Control Scheme for Improving the Performance of Monopulse Tracking Algorithm (모노펄스 추적 알고리즘 성능 향상을 위한 능동위상배열안테나 제어 기법)

  • Jung, Jinwoo;Park, Sungil;Lee, Teawon
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.60-65
    • /
    • 2020
  • The monopulse tracking algorithm can estimate the location of a partner station based on an RF (Radio Frequency) signal. The location of the partner station is estimated based on the monopulse ratio curve (MR-C), which is calculated based on the sum and difference signal patterns of an antenna. Therefore, the range in which the estimated location can be calculated with high accuracy increases in proportion to the linear region of MR-C. In this paper, we proposed a method to extend the linear region of the MR-C curve using the beamforming technique for the tracking antenna system using the active phased array antenna. Simulation results based on the same antenna system, it was confirmed that the linear region of MR-C was enlarged by about twice as much as the general case where the proposed method was not applied.

Performance of OFDM using Beam-switching and Space-Time coding in Wireless Personal Area Network (무선 개인 영역망 환경에서 빔 스위칭과 시공간부호를 적용한 OFDM 전송방식의 성능)

  • Yoon, Seok-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we consider the orthogonal frequency division multiplexing (OFDM) based transmission incoorperating with beam-switching and space-time coding. Specifically, we consider three configurations; (1) the beamforming technique, (2) the spatial diversity technique and (3) their combination and evaluate the performance in wireless personal area network (WPAN) environment. For the beam-forming technique, we consider the beam-switching which is performed at RF front-end with a pre-defined set of beams and for the space-time coding, we consider the Alamauti scheme with antenna selection. For the combined scheme, we divide the antennas used into two group to generate two independent beams and apply the two-antenna Alamauti scheme over the two beams. For these three configurations, performance is evaluated in terms of the SNR gain.

An Online Calibration Algorithm for Cellular CDMA Antenna Arrays (Cellular CDMA용 배열 안테나 오차 보정 알고리듬)

  • 석미경;조상우;전주환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.306-314
    • /
    • 2004
  • Some receiver(and most transmit) beamforming algorithms with an array antenna at a cellular CDMA base stations require accurate internal and external calibrations. The external calibration, which usually needs to be done only once, determines the array manifolds, i.e. the complex response of each antenna as a function of DOA(Directions of Arrival). The internal calibrations are necessary because characteristics of RF/IF circuity of each receiver chain vary differently in response to temperature or humidity changes. We propose an iterative subspace-based calibration algorithm for an asynchronous CDMA-based antenna away in the presence of unknown gain and phase error is presented. We verify the subspace-based calibration algorithms by performing the experiment using measured data. Also, we propose an efficient algorithm using the simulated annealing technique. This algorithm overcomes the problem of the initial guessing in the subspace-based approach.