• Title/Summary/Keyword: RETINOIC ACID

Search Result 304, Processing Time 0.022 seconds

Increased Catalase Activity by All-trans Retinoic Acid and Its Effect on Radiosensitivity in Rat Glioma Cells (백서 교종 세포에서 레티노인산에 의한 카탈라제의 활성 증가가 방사선감수성에 미치는 효과)

  • Jin, Hua;Jeon, Ha-Yeun;Kim, Won-Dong;Ahn, Hee-Yul;Yu, Jae-Ran;Park, Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.211-216
    • /
    • 2005
  • Purpose: It has been reported that all-trans retinoic acid (ATRA) can inhibit glioma growing in vitro. However, clinical trials with ATRA alone in gliomas revealed modest results. ATRA has been shown to increase radiosensitivity in other tumor types, so combining radiation and ATRA would be one of alternatives to increase therapeutic efficacy in malignant gliomas. Thus, we intended to know the role of catalase, which is induced by ATRA, for radiosensitivity if radiation-reduced reactive oxygen species (ROS) is removed by catalase, the effect of radiation will be reduced. Materials and Methods: A rat glioma cell line (36B10) was used for this study. The change of catalase activity and radiosensitivity by ATRA, with or without 3-amino-1, 2, 4-triazole (ATZ), a chemical inhibitor of catalase were measured. Catalase activity was measured by the decomposition of $H_2O_2$ spectrophotometrically Radiosensitivity was measured with clonogenic assay. Also ROS was measured using a 2, 7-dichlorofluorescein diacetate spectrophotometrically. Results: When 36B10 cells were exposed to 10, 25 and $50{\mu}M$ of ATRA for 48 h, the expression of catalase activity were increased with increasing concentration and incubation time of ATRA. Catalase activity was decreased with increasing the concentration of AT (1, $10{\mu}M$) dose-dependently. ROS was increased with ATRA and it was augmented with the combination of ATRA and radiation. ATZ decreased ROS production and increased cell survival in combination of ATRA and radiation despite the reduction of catalase. Conclusion: The increase of ROS is one of the reasons for the increased radiosensitivity in combination with ATRA. The catalase that is induced by ATRA doesn't decrease ROS production and radiosensitivity.

Dedifferentiation State Specific Increase of Trypsin- and Chymotrypsin-like Protease Activities during Urodele Limb Regeneration and Their Enhancement by Retinoic Acid Treatment (유미양서류 다리 재생 기간중 탈분화 시기 특이적 트립신, 키모트립신 유사 단백질 효소의 활성도 증가)

  • 이은호;김원선
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Treatment of regenerating amphibian limbs with retinoic acid (RA) is known to induce paftern duplication, which is closely related to the extent of dedifferentiation. In the present study, the activities of trypsin- and chymotrypsin-like proteases are examined to delineate a possible role in the process of dedifferentiation in the regenerating limbs of urodeles, the Korean salamander (Hynobius leechii) and the Mexican axolod (Ambystoma mexicanum). Specifically, we were interested to know if there is any correlation between trypsin- and chymotrypsin-like protease activities and the state of dedifferentiation which is augmented by RA treatment. We were also interested in expoloring if there is any species-specific difference in the profile of enzyme activities during limb regeneration. The results showed that the activities of these two enzymes reached a peak level at dedifferentiation stage, and RA treatment caused elevation of their activities, especially in the case of trypsin-like protease. The increase of trypsin-like protease activity after RA treatment was pronounced in the Korean salamander, which might reflect a species-specific responsiveness to RA. The present results imply that trypsin and chymotrypsin or similar proteases may play an active role in the process of dedifferentiation in regenerating limbs, and that trypsin or trypsin-like eryrymes might be involved in the RA-evoked enhancement of dedifferentiation which precedes overt pattern duplication.

  • PDF

Autoxidation Products of Phytofluene in Liposome and Conversion of Phytapentaenal to 4,5-Didehydrogeranyl Geranoic Acid in Pig Liver Homogenate

  • Kim, Seon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.234-238
    • /
    • 2000
  • The cleavage products formed by autoxidation of phytofluene were evaluated in order to elucidate possible oxidation products of phytofluene under oxidative conditions. Phytofluene solubilized at 50$\mu$M in liposomal suspension was oxidized by incubating at 37$^{\circ}C$ for 72 h. Among a number of oxidation products formed, five products in the carbonyl compound fraction were identified as 6, 10, 14-trimethylpentadeca-3,5,9,13-tetraen-2-one, phytapentaenal, 5,9,13,17-tetramethyloctadeca-2,4,6,8,12,16-hexaenal, 5,9,13,17-tetramethyloctadeca-2,4,8,12,16-pentaenal, 2,7,11,15,19-pentamethylicosa-2,4,6,10,14,18-hexaenal and 4,9,13,17,21-pentamethyldocosa-2,4,6,8,12,16,20-heptaenal. These correspond to a series of products formed by cleavage in the respective eight conjugated double bonds of phytofluene. Also, 4,5-didehydorgeranyl geranoic acid was formed by autoxidation of phytofluene in liposomal suspension. The pig liver homogenate had the ability to convert phytapentaenal to 4,5-didehydrogeranyl geranoic acid, comparable to the conversion of all-trans-retinal to all-trans-retinoic acid. These results suggest that phytofluene is cleaved to a series of long-chain and short-chain carbonyl compounds under the oxidative condition in vitro and that phytapentaenal is further enzymatically converted to 4,5-didehydrogeranyl geranoic acid.

  • PDF

Genetically Modified Human Embryonic Stem Cells Expressing Nurr1 and Their Differentiation into Tyrosine Hydroxylase Positive Cells In Vitro

  • Cho, Hwang-Yun;Lee, Chang-Hyun;Kim, Eun-Young;Lee, Won-Don;Park, Sepill;Lim, Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.272-272
    • /
    • 2004
  • The objective of this study is to test whether human embryonic stem cells expressing Nurr1 (Nurr1-transfected hES cells) could be expressed TH according to neuronal differentiation. As an effort to direct differentiation of hES (MB03 registered in NIH) cells to dopamine-producing neuronal cells, Nurr1 was transfected using conventional transfection protocol into MB03 cell and examined the expression of tyrosine hydroxylase (TH) after differentiation induced by retinoic acid (RA) and ascorbic acid (AA). (omitted)

  • PDF

F9 기형암종 세포의 분화에 따른 small GTP-binding protein변화

  • 박혜성;이준승
    • The Korean Journal of Zoology
    • /
    • v.37 no.1
    • /
    • pp.40-48
    • /
    • 1994
  • 세포분화에 따른 Small GTP-binding protein의 역할을 밝히기 위하여 Retinoic acid(RA)와 dibutyryl cyclic AMP(dbcAMP)로 분화를 유도한 F9 기형암종세포의 형태적인 변화와 함께 Small GTP-binding protein의 분포를 조사하였다. RA와 dbcAMP를 처리한 세포는 분화유도 5일경(초기 분화 단계)에 분명한 세포의 경계를 보이기 시작하여 7일경(분화 후기 단계)에는 거의 모든 세포가 등근 분화된 형태로 전환되었다. 이 분화과정 동안 세포막에는 많은 microvilli와 lamellopodia 같은 구조물이 나타났다. 아울러 초기 분화 단계에 많은 량의 laminin이 발현되었으며 분화 후기에 microtubule의 재분포가 관찰되었다. 세종류의 Small GTP-binding protein(25 23, 21 KD)이 F9 세포의 막성분과 세포질에서 관찰되었으며 분화가 진행됨에 따라서 세단백질 모두 증가되는 양상을 보였다 이러한 결과는 Small GTP-binding protein이 F9 세포의 분화에 특별한 기능을 가지고 있음을 시사해 주고 있다.

  • PDF

THE EFFECTS OF GLYCYRRHETINIC ACID AND OLEANOLIC ACID TO CYCLOSPORINE A INDUCED CELL ACTIVITY OF CULTURED GINGIVAL FIBROBLASTS (Glycyrrhetinic acid와 oleanolic acid가 배양 치은 섬유모세포의 cyclosporine A 유도 세포활성에 미치는 영향)

  • Kim, Young-Wook;Kim, Jae-Hyun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.238-254
    • /
    • 1994
  • Cyclosporine A is an immunosuppressant commonly used for patients receiving organ transplants. Gingival overgrowth is an adverse side-effect seen in about 8-26% of patients taking cyclosporine A which have been shown to increase the DNA synthesis of gingival fibroblast at the concentration of $10^{-9}g/ml$ in vitro. Glycyrrhetinic acid is the active pharmacological ingredients of licorice which exerts steroid-like action and anti-viral activity. Oleanolic acid, which were isolated from Glechoma hederacea, has been shown to act as inhibitors of tumor promotion in vivo and to be less cytotoxic retinoic acid. This study has been performed to evaluate the effects of glycyrrhetinic acid and oleanolic acid on cyclosporine A induced cell activity in vitro. Human gingival fibroblasts were isolated from explant cultures of healthy gingiva of orthodontic patients. Gingival fibroblasts were trypsinized and transferred to the walls of microtest plates. Fibroblasts were cultured in growth medium added $10^{-9}g/ml$ cyclosporineA and $50{\mu}l/ml$ lipopolysaccharides. Cells between the 4th and 6th transfer in culture were used for this study. The morphology of gingival fibroblst were examined by inverted microscope. The effects of cyclosporine A on the time course of DNA sythesis by human gingival fibroblasts were assessed by $[^3H]-thymidine$ uptake assays. Cyclosporine A was found to stimulate DNA synthesis of human gingival fibroblast at a concentration of $10^{-9}g/ml$. In the presence of lipopolysaccharide derived from Fusobacterium nucleatum, addition of cyclosporine A results in reversal of inhibition at the concentration which normally inhibits gingival fibroblast proliferation. The cell acitivities in the presence of glycyrrhetinic acid and oleanolic acid were decreased, and increased cell acitivities by cyclosporine A were decreased by glycyrrhetinic acid and oleanolic acid at the concentration of $200{\mu}g/ml$. These results suggested that the increased cell activities by cyclosporine A modulated by glycyrrhetinic acid and oleanolic acid.

  • PDF

Lysosomal acid phosphatase mediates dedifferentiation in the regenerating salamander limb

  • Ju, Bong-Gun;Kim, Won-Sun
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • In this study, monoclonal antibodies against lysosomal acid phosphatase (LAP) of a salamander, Hynobius leechii, were used to determine the spatial and temporal expression of the LAP in the regenerating limbs. The Western blot and immunohistochemical analysis in the limb regeneration revealed that LAP was highly expressed at the dedifferentiation stage, especially in the wound epidermis and dedifferentiating limb tissues such as muscle and cartilage. With RA treatment, the LAP expression became upregulated in terms of both level and duration in the wound epidermis, blastemal cell and dedifferentiating limb tissues. In addition, in situ activity staining of LAP showed a similar result to that of immunohistochemistry. Thus, the activity profile of LAP activity coincides well with the expression profile of LAP during the dedifferentiation period. Furthermore, to examine the effects of lysosomal enzymes including LAP on salamander limb regeneration, lysosome extract was microinjected into limb regenerates. Interestingly, when the lysosome extract was microinjected into limb regenerates with a low dose of RA($50\;{\mu}g/g$ body wt.), skeletal pattern duplication occurred frequently in the proximodistal and transverse axes. Therefore, lysosomal enzymes might cause the regenerative environment and RA plays dual roles in the modification of positional value as well as evocation of extensive dedifferentiation for pattern duplication. In conclusion, these results support the hypothesis that dedifferentiation is a crucial event in the process of limb regeneration and RA-evoked pattern duplication, and lysosomal enzymes may play important role(s) in this process.

Oxidative Cleavage Products Derived from Phytofluene by Pig Liver Homogenate

  • Kim, Seon-Jae;Kim, Hag-Lyeol;Jang, Hong-Gi
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.424-427
    • /
    • 2005
  • The cleavage products formed by the autoxidation of phytofluene were evaluated in order to elucidate possible oxidation products of phytofluene in the oxidative condition. Among a number of oxidation products formed, the following five in the carbonyl compound fraction were identified: 6, 10, 14-trimethylpentadeca-3,5,9,13-tetraen-2-one, phytapentaenal, 5,9,13,17-tetramethyloctadeca-2,4,6,8,12,16-hexaenal, 5,9,13,17-tetramethyloctadeca-2,4,8,12, 16-pentaenal, 2,7,11,15,19-pentamethylicosa-2,4,6,10,14,18-hexaenal and 4,9,13,17,21-pentamethyldocosa-2,4,6,8,12,16,20-heptaenal. In addition, 4,5-didehydrogeranyl geranoic acid was formed by the autoxidation of phytofluene in liposomal suspension. The pig liver homogenate was able to convert phytapentaenal to 4,5-didehydrogeranyl geranoic acid, in a manner comparable to the conversion of all-trans-retinal to all-trans-retinoic acid. These results suggest firstly that phytofluene is cleaved into a series of long-chain and short-chain carbonyl compounds under the oxidative condition in vitro and secondly that phytapentaenal is further enzymatically converted to 4,5-didehydrogeranyl geranoic acid.

Evaluation of the inhibition of the differentiation of pre-adipocytes into matures adipocytes

  • Morvan, Pierre Yves
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.440-447
    • /
    • 2003
  • Up until today, the key to contouring has been resumed in these two alternatives, either limiting the adipocyte storing capacity by modulating lipogenesis, or by stimulating lipolysis to eliminate adipocyte lipid content. Another interesting way could be the regulation of adipocyte differentiation. In this work, we have evaluated the effect of a brown algal extract of Sphacelaria scoparia (SSE) on the differentiation of pre-adipocytes into adipocytes. A pre-adipocyte line (3T3-L 1) was used. The differentiation was evaluated by the measure of produced lipids thanks to red oil coloration and spectrophotometry, and also by the expression of adipocyte differentiation markers: enzymes such as fatty acid synthase (FAS) and stearoyl CoA desaturase (SCD), or membrane proteins such as glucose transporters (GLUT -4) and fatty acid transporters (FAT) expressed on the surface of human adipocytes. These genes are under control of two transcription factors: CAAT-enhancer binding protein (c/EBP alpha) and sterol response element binding protein (SREBP1). All these markers were analysed at different stages of differentiation by RT -PCR. Sphacelaria extract (SSE) inhibits pre-adipocytes differentiating into adipocytes following a dose-dependant relation, using a kinetics similar to retinoic acid. It decreases the expression of mRNA specific to FAS, FAT, GLUT -4, SCD1, c/EBP alpha and SREBP1. Moreover, SSE regulated on collagen 1 and collagen 4 expression. A stimulation of collagen 1 was also measured in human skin fibroblasts. Thus, SSE performs as a genuine differentiation inhibitor and not only as a lipogenesis inhibitor, and could be used in slimming products.

  • PDF

Hepatitis E Virus Papain-Like Cysteine Protease Inhibits Type I Interferon Induction by Down-Regulating Melanoma Differentiation-Associated Gene 5

  • Kim, Eunha;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1908-1915
    • /
    • 2018
  • Upon viral infection, the host cell recognizes the invasion through a number of pattern recognition receptors. Melanoma differentiation associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) recognize RNA molecules derived from invading viruses, activating down-stream signaling cascades, culminating in the induction of the type I interferon. On the other hand, viruses have evolved to evade type I interferon-mediated inhibition. Hepatitis E virus has been shown to encode a few antagonists of type I interferon and it is not surprising that viruses encode multiple mechanisms of viral evasion. In the present study, we demonstrated that HEV PCP strongly down-regulates MDA5-mediated activation of interferon ${\beta}$ induction in a dose-dependent manner. Interestingly, MDA5 protein expression was almost completely abolished. In addition, polyinosinic polycytidylic acid (poly(I:C))- and Sendai virus-mediated activation of type I interferon responses were similarly abrogated in the presence of HEV PCP. Furthermore, HEV PCP down-regulates several molecules that play critical roles in the induction of type I IFN expression. Taken together, these data collectively suggest that HEV-encoded PCP is a strong antagonist of type I interferon.