• Title/Summary/Keyword: RELAP5/MOD3.2 code

Search Result 40, Processing Time 0.029 seconds

Analysis of Experiments for Vertical In-Tube Steam Condensation with Noncondensable Gases Using the Modified RELAP5/MOD3.2 Code

  • Park, Hyun-Sik;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.109-109
    • /
    • 1999
  • The standard RELAP5/MOD3.2 code was modified using the non-iterative modeling. which is developed to simulate steam condensation in the presence of noncondensable gases ill a vertical tube. The modified RELAP5/MOD3.2 code was used to simulate two kinds of vertical in-tube experiments involving the condensation phenomenon in the presence of noncondensable gases. The modeling capabilities of the modified RELAP5/MOD3.2 codc as well as the standard code for the condensation in the presence of noncondensable gases are assessed using two PCCS condensation experiments and four reflux condensation experimcnts. The modified RELAP5/MOD3.2 code gives good prediction over the data of both PCCS condensation and reflux condensation experiments

  • PDF

Prediction of Thermal-Hydraulic Phenomena in the LBLOCA Experiment L2-3 Using RELAP5/MOD2 (RELAP5/MOD2 코드에 의한 대형냉각재 상실사고 모사실험 L2-3의 열수력 현상 예측)

  • Bang, Young-Seok;Chung, Bub-Dong;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.56-65
    • /
    • 1991
  • The LOFT LOCE L2-3 was simulated using the RELAP5/MOD2 Cycle 36.04 code to assess its capability in predicting the thermal-hydraulic phenomena in LBLOCA of a PWR. The reactor vessel was simulated with two core channels and split downcomer modeling for a base case calculation using the frozen code. The result of the base calculation showed that the code predicted the hydraulic behavior, and the blowdown thermal response at high power region of the core reasonably and that the code had deficiencies in the critical How model during subcooled-two-phase transition period, in the CHF correlation at high mass flux and in the blowdown rewet criteria. An overprediction of coolant inventory due to the deficiencies yielded the poor prediction of reflood thermal response. Improvement of the code, RELAP5 / MOD2 Cycle 36.04, based on the sensitivity study increased the accuracy of the prediction of the rewet phenomena.

  • PDF

Assessment and Improvement of Condensation Models in RELAP5/MOD3.2

  • Choi, Ki-Yong;Park, Hyun-Sik;Kim, Sang-Jae;No, Hee-Cheon;Bang, Young-Seok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.585-590
    • /
    • 1997
  • The condonation models in the standard RELAP5/MOD3.2 code are assessed and improved based on the database, which is constructed from the previous experimental data on various condonation phenomena The default model the laminar film condonation in RELAP5/MOD3.2 does not give any reliable predictions, and its alternative model always predicts higher values than the experimental data Therefore, it is needed to develop a new correlation based on the experimental data of various operating ranges in the constructed database. The Shah correlation, which is used to calculate the turbulent film condensation heat transfer coefficients in the standard RELAP5/MOD3.2, well predicts the experimental data in the database. The horizontally stratified condonation model of RELAP5/MOD3.2 overpredicts both cocurrent and countercurrent experimental data The correlation proposed by H.J.Kim predicts the database relatively well compared with that of RELAP5/MOD3.2 The RELAP5/MOD3.2 model should use the liquid velocity for the calculation of the liquid Reynolds number and be modified to conifer the effects of the gas velocity and the film thickness.

  • PDF

Assessments of RELAP5/MOD3.2 and RELAP5/CANDU in a Reactor Inlet Header Break Experiment B9401 of RD-14M

  • Cho Yong Jin;Jeun Gyoo Dong
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.426-441
    • /
    • 2003
  • A reactor inlet header break experiment, B9401, performed in the RD-14M multi channel test facility was analyzed using RELAP5/MOD3.2 and RELAP5/CANDU[1]. The RELAP5 has been developed for the use in the analysis of the transient behavior of the pressurized water reactor. A recent study showed that the RELAP5 could be feasible even for the simulation of the thermal hydraulic behavior of CANDU reactors. However, some deficiencies in the prediction of fuel sheath temperature and transient behavior in athe headers were identified in the RELAP5 assessments. The RELAP5/CANDU has been developing to resolve the deficiencies in the RELAP5 and to improve the predictability of the thermal-hydraulic behaviors of the CANDU reactors. In the RELAP5/CANDU, critical heat flux model, horizontal flow regime map, heat transfer model in horizontal channel, etc. were modified or added to the RELAP5/MOD3.2. This study aims to identify the applicability of both codes, in particular, in the multi-channel simulation of the CANDU reactors. The RELAP5/MOD3.2 and the RELAP5/CANDU analyses demonstrate the code's capability to predict reasonably the major phenomena occurred during the transient. The thermal-hydraulic behaviors of both codes are almost identical, however, the RELAP5/CANDU predicts better the heater sheath temperature than the RELAP5/MOD3.2. Pressure differences between headers govern the flow characteristics through the heated sections, particularly after the ECI. In determining header pressure, there are many uncertainties arisen from the complicated effects including steady state pressure distribution. Therefore, it would be concluded that further works are required to reduce these uncertainties, and consequently predict appropriately thermal-hydraulic behaviors in the reactor coolant system during LOCA analyses.

Assessment of RELAP5/MOD3.2 with Condensation Experiment in the Presence of Noncondensables in a Vertical Tube

  • Park, Hyun-Sik;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.547-552
    • /
    • 1998
  • The standard RELAP5/MOD3.2 code were assessed with the condensation experiment in the presence of noncondensable gas in a vortical tube of PCCS of CP-1300. There are two wall film condensation models, the default model and the alternative model, in RELAP5/MOD3.2. The experimental apparatus was modeled with the two models, md simulations were performed for several sub-tests to be compared with the experimental results. In overall sense the simulation results showed that the default model of RELAP5/MOD3.2 under-predicts the heat transfer coefficients, while the alternative model over-predicts them throughout the condensing tube.

  • PDF

Improvements to the RELAP5/MOD3 Reflood Model and Assessment (RELAP5 /MOD3 재관수 모델의 개선 및 평가)

  • Chung, B.D.;Lee, Y.J.;Park, C.E.;Choi, C.J.;Hwang, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.265-276
    • /
    • 1994
  • Several improvements to the RELAP5/MOD3 reflood model hate been made. These improvement were made to correct deficiencies in the reflood model identified by the assessment of the RELAP5/MOD3 code against FLECHT-SEASET experiments. The improvements consist of modification of reflood wall heat transfer package and adjusting the droplet size in dispersed flow regime. The time smoothing of wall vaporization and level tracking of transition flow are also added to eliminate the pressure spikes and level oscillation during reflood process. Assessment of the improved model against FLECHT-SEASET experimental data and application of LBLOCA analysis for plant shows that the deficiencies have been corrected.

  • PDF

Improvement of the CCFL Model of the RELAP5/MOD3.2.2B Code in a Horizontal Pipe

  • Heo, Sun;No, Hee-Cheon;Chang, Kyung-Sung;Ha, Sang-Jun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.115-115
    • /
    • 1999
  • To demonstrate the applicability of RELAP5 to the prediction of the onset offlooding in the hot leg at the reflux condensation phase during mid-loop operation, numerical analysis is performed for the counter-current flow in a horizontal pipe with the inclined riser using the RELAP5/MOD3.2.2b code. It is found that the RELAP5, simulating the CCFL phenomena using interfacial friction along with the flow regime map in the horizontal pipe, produces unsatisfactory results. Under the CCFL condition, it is observed that large oscillation exists in the flow rate, void fraction, and etc. and the liquid flow rate is much lower than that predicted by the CCFL model measured in the experiment. The CCFL model of RELAP5 for the vertical volume is extended to the model for the horizontal and inclined volumes. The horizontal volume flow regime map and interfacial friction model coupled to the CCFL model are modified. And a new correlation developed from Kang's experiment is implemented to the CCFL model of RELAP5. With this modified RELAP5, the analysis of CCFL phenomena in the horizontal pipe and hot leg geometry is performed, and produces reasonable results in comparison with experimental data.

  • PDF

Analysis of LOFT LP-02-6 Experiment Using RELAP5/MOD3.2

  • Park, Tong-Soo;Lee, Jae-Hoon;Park, Byung-Suh;Cho, Chang-Sok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.357-362
    • /
    • 1996
  • LOFT LBLOCA test, LP-02-6 was analyzed using RELAP5/MOD3.2. It has a distinguished thermal-hydraulic phenomenon of a positive bottom-up core flow in tile blowdown phase. A modified nodalization which is based on that used in LP-LB-1 calculation by Lubbesmeyer was used in the calculation. RELAP5/MOD3.2 predicted overall system hydraulic behavior relatively well. However, the bottom-up quenching in the middle part of the core was not predicted sufficiently. It was demonstrated also that the peak cladding temperature can be predicted well by adjusting a discharge coefficient. But more improvements are needed in order to apply this code to actual plants with less user dependency.

  • PDF