• Title/Summary/Keyword: REF-ET

Search Result 10, Processing Time 0.021 seconds

Estimation on Trends of Reference Evapotranspiration of Weather Station Using Reference Evapotranspiration Calculator Software (Reference Evapotranspiration Calculator Software를 이용한 기상관측소 기준증발산 추정)

  • Choi, Wonho;Choi, Minha;Oh, Hyunje;Park, Jooyang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.219-231
    • /
    • 2010
  • The Reference Evapotranspiration Calculator Software (REF-ET) supports computational guidelines for the reference evapotranspiration using seventeen FAO Penman-Monteith (PM) equations simultaneously such as the ASCE and FAO standardized forms. The REF-ET can conveniently consider missing data predictions and regional site characterizations, when reference ET is computed on monthly, daily, and hourly time steps. The applicability of the REF-ET was estimated to simulate the reference ET using hourly weather data from Seoul weather station for 29 years. The result found that the FAO24-Rd and 1957-Makk equations closely concerned with solar radiation parameter which were the most highly correlated to reference ET computed by pan coefficient. In addition, the 1957-Makk equation was identified as the most correct computational method for reference ET by analysis of bias and root mean square error. The 1957-Makk equation could predict the reference ET within the error of less than 1.06 mm/day, though all the other equations tended toward overestimation of predicting the reference ET in comparison with refecence ET of pan. The results of this study suggest that the REF-ET will be applicable to support reference ET estimation for a variety of field condition and time-scale.

Computation of Reference Crop Evapotranspiration for Irrigation Scheduling (관개계획을 위한 기준작물 증발산량 산정 -고삼 저수지에 대한 사례연구-)

  • 정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • In order to provide basic information for the estimation of evapotranspiration for grass (Joycia Japonica), both field lysimeter experiment and model prediction were performed to estimate daily ET Various methods were used to predict daily reference crop ET and crop coefficients. Measured mean daily ET during the 1997 growing season was 4.5mm Model predicted mean daily ET during the 1997 growing season varied from 3.6 to 4.7mm depending on the prediction model Crop coefficients varied from 0.96 to 1.27 depending on the prediction model Comparison of the seven reference crop ET prediction methods used in this study shows that the Penman-Monteith method gave the smallest ET while the Hargreaves method gave the largest ET. The crop coefficient by the corrected Penman method was 1.03, which is closest to 1.0, suggesting that this method may he the best prediction method.

  • PDF

Comparison of Observed and Estimated Values of Reference Crop Evapotranspiration Rate (기준작물(잔디)의 증발산량 실측치와 모형 추정치의 비교)

  • 정상옥;박기중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.123-129
    • /
    • 1999
  • Evapotranspiration is one of the important water budget components . An experiment was conducted to measure evapotranspiration. Three lysimeters were used to measure daily evapotranspiration. Lysimetrically measured values were compared with estimated values of various methods in REF-ET model , and then crop coefficient was computed.

  • PDF

GEANT4-based Monte Carlo Simulation of Beam Quality Correction Factors for the Leksell Gamma Knife® PerfexionTM

  • Schaarschmidt, Thomas;Kim, Tae Hoon;Kim, Yong Kyun;Yang, Hye Jeong;Chung, Hyun-Tai
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1814-1820
    • /
    • 2018
  • With the publication of TRS-483 in late 2017 the IAEA has established an international code of practice for reference dosimetry in small and non-standard fields based on a formalism first suggested by Alfonso et al. in 2008. However, data on beam quality correction factors ($k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$) for the Leksell Gamma $Knife^{(R)}$ $Perfexion^{TM}$ is scarce and what little data is available was obtained under conditions not necessarily in accordance with the IAEA's recommendations. This study constitutes the first systematic attempt to calculate those correction factors by applying the new code of practice to Monte Carlo simulation using the GEANT4 toolkit. $k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$ values were determined for three common ionization chamber detectors and five different phantom materials, with results indicating that in most phantom materials, all chambers were well suited for reference dosimetry with the Gamma $Knife^{(R)}$. Similarities and differences between the results of this study and previous ones were also analyzed and it was found that the results obtained herein were generally in good agreement with earlier PENELOPE and EGSnrc studies.

Estimation and Comparison of Reference Crop Evapotranspiration at the Selected Stations in Korea (우리 나라 주요지점의 기준작물 증발산량 산정과 비교)

  • Kim Hyun-soo;Chung Sang-ok
    • KCID journal
    • /
    • v.6 no.2
    • /
    • pp.37-46
    • /
    • 1999
  • This study is performed to select irrigation design year from 10-year return period 7-month(April to October) precipitation and compare reference crop evapotranspiration at 13 stations by REF-ET model. The three smallest 10-year return period 7-month(Apri

  • PDF

Selection of Irrigation Desgin Year and Compparision of Reference Crop Evapotranspiration at 13 Regions (지역별 관개 계획기준년 선정과 기준작물 잠재증발산량 비교)

  • 김현수
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.93-98
    • /
    • 1999
  • This study is performed to select irrigation design year from 10-year return period 7-month(April to October) precipitation amount and compare reference crop evapotranspiration at 13 regions by REF-ET model. 1. Seven-month growing season average reference crop evapotranspiration values showed low values of 4.1 ∼4.2mm /day by FAO-24 Corrected Penman method, and 3.6 ∼3.7mm/day by FAP-24 Blaney Criddle method in Chinjin and Ulsan, high values of 4.9mm/day by FAO-24 Corrected Penman method , 4.1mm/day by FAO -24 Blaney Criddle method in Mokpo and Pohang. 2. Estimated seven-month growing season average reference crop evapotranspirations are 4.6mm/day by FAO-24 Corrected Penman method, 3.9,mm/day by FAO-24 Balney Criddle method, 4.0mm/day 1985 Hargreaves method, respectively.

  • PDF

Determination of the Intracellular Concentrations of Metabolites in Escherichia coli Collected during the Exponential and Stationary Growth Phases using Liquid Chromatography-Mass Spectrometry

  • Park, Chang-Hun;Park, Chang-Hun;Lee, Youn-Jin;Lee, Sang-Yup;Oh, Han-Bin;Lee, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.524-530
    • /
    • 2011
  • In the present study, we demonstrate that SRM LC-MS/MS method developed by Luo et al. (ref. 10) can be successfully applied to the quantitative analysis of intracellular metabolites in E. coli that are collected at the exponential and stationary growth phases. A focus is given on measuring the changes in the concentrations of intracellular metabolites in batch cultures, which were induced during both the dynamically changing exponential and stationary growth phases. The following intracellular metabolites are quantified in the exponential and stationary phases of E. coli growth, using the SRM mode of a triple quadrupole mass spectrometer: glucose-1-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, acetyl-coenzyme A, 6-phosphogluconate, ribulose-5-phosphate, xylulose-5-phosphate, erythrose-4-phosphate. The determined intracellular metabolite concentration profiles are shown to be in a good agreement with the growth profiles of E. coli, which clearly indicates that SRM LC-MS/MS can be successfully used for following the metabolite changes induced at different growth stages.

Parametric resonance of a spinning graphene-based composite shaft considering the gyroscopic effect

  • Neda Asadi;Hadi Arvin;Yaghoub Tadi Beni;Krzysztof Kamil Zur
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.457-471
    • /
    • 2024
  • In this research, for the first time the instability boundaries for a spinning shaft reinforced with graphene nanoplatelets undergone the principle parametric resonance are determined and examined taking into account the gyroscopic effect. In this respect, the extracted equations of motion in our previous research (Ref. Asadi et al. (2023)) are implemented and efficiently upgraded. In the upgraded discretized equations the effect of the Rayleigh's damping and the varying spinning speed is included that leads to a different dynamical discretized governing equations. The previous research was about the free vibration analysis of spinning graphene-based shafts examined by an eigen-value problem analysis; while, in the current research an advanced mechanical analysis is addressed in details for the first time that is the dynamics instability of the aforementioned shaft subjected to the principal parametric resonance. The spinning speed of the shaft is considered to be varied harmonically as a function of time. Rayleigh's damping effect is applied to the governing equations in order to regard the energy loss of the system. Resorting to Bolotin's route, Floquet theory and β-Newmark method, the instability region and its accompanied boundaries are defined. Accordingly, the effects of the graphene nanoplatelet on the instability region are elucidated.

Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice (논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I))

  • 류한열;김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF

Modified Shrinking Core Model for Atomic Layer Deposition of TiO2 on Porous Alumina with Ultrahigh Aspect Ratio

  • Park, Inhye;Leem, Jina;Lee, Hoo-Yong;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.519-523
    • /
    • 2013
  • When atomic layer deposition (ALD) is performed on a porous material by using an organometallic precursor, minimum exposure time of the precursor for complete coverage becomes much longer since the ALD is limited by Knudsen diffusion in the pores. In the previous report by Min et al. (Ref. 23), shrinking core model (SCM) was proposed to predict the minimum exposure time of diethylzinc for ZnO ALD on a porous cylindrical alumina monolith. According to the SCM, the minimum exposure time of the precursor is influenced by volumetric density of adsorption sites, effective diffusion coefficient, precursor concentration in gas phase and size of the porous monolith. Here we modify the SCM in order to consider undesirable adsorption of byproduct molecules. $TiO_2$ ALD was performed on the cylindrical alumina monolith by using titanium tetrachloride ($TiCl_4$) and water. We observed that the byproduct (i.e., HCl) of $TiO_2$ ALD can chemically adsorb on adsorption sites, unlike the behavior of the byproduct (i.e., ethane) of ZnO ALD. Consequently, the minimum exposure time of $TiCl_4$ (~16 min) was significantly much shorter than that (~71 min) of DEZ. The predicted minimum exposure time by the modified SCM well agrees with the observed time. In addition, the modified SCM gives an effective diffusion coefficient of $TiCl_4$ of ${\sim}1.78{\times}10^{-2}\;cm^2/s$ in the porous alumina monolith.