• Title/Summary/Keyword: REED

Search Result 622, Processing Time 0.024 seconds

Design of Reed Solomon Decoder for Optical Disks (광학식 디스크를 위한 Reed Solomon 복호기 설계)

  • 김창훈;박성모
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.262-265
    • /
    • 2000
  • This paper describes design of a (32, 28) Reed Solomon decoder for optical compact disk provides double error detecting and correcting capability. The most complex circuit in the RS decoder is part for solving the error location numbers from error location polynomial, and the circuit has great influence on overall decoder complexity. We use RAM based architecture with Euclid algorithm, Chien search algorithm and Forney algorithm. We have developed VHDL model and Performed logic synthesis using the SYNOPSYS CAD tool. Then, the RS decoder has been implemented with FPGA. The total umber of gate is about 11,000 gates and it operates at 20MHz.

  • PDF

A COMPLEXITY-REDUCED INTERPOLATION ALGORITHM FOR SOFT-DECISION DECODING OF REED-SOLOMON CODES

  • Lee, Kwankyu
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.785-794
    • /
    • 2013
  • Soon after Lee and O'Sullivan proposed a new interpolation algorithm for algebraic soft-decision decoding of Reed-Solomon codes, there have been some attempts to apply a coordinate transformation technique to the new algorithm, with a remarkable complexity reducing effect. In this paper, a conceptually simple way of applying the transformation technique to the interpolation algorithm is proposed.

Triple Error Correcting Reed Solomon Decoder Design Using Galois Subfield Inverse Calculator And Table ROM

  • An Hyeong-Keon;Hong Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.8-13
    • /
    • 2006
  • A new RS(Reed Solomon) Decoder design method, using Galois Subfield GF($2^4$) Multiplier, is described. The Decoder is designed using Normalized error position stored ROM. Here New Inverse Calculator in GF($2^8$) is designed, which is simpler and faster than the classical GF($2^8$) direct inverse calculator, using the Galois Subfield GF($2^4$) Arithmatic operator.

An Analysis of Bit Error Probability of Reed-Solomon/Convolutional Concatenated Codes (Reed-Solomon/길쌈 연쇄부호의 비트오율해석)

  • 이상곤;문상재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.19-26
    • /
    • 1993
  • The bit error probability of Reed-Solomon/convolutional concatenated codes can be more exactly calculated by using a more approximate bound of the symbol error probability of the convolutional codes. This paper obtains the unequal symbol error bound of the convolutional codes, and applies to the calculation of the bit error probability of the concatenated codes. Our results are tighter than the earlier studied other bounds.

  • PDF

A VLSI Design of a Pipeline (15,9) Reed-Solomon Decoder (Pipeline (15,9) Reed-Solomon decoder의 VLSI 설계)

  • 김기욱;송인채
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.938-941
    • /
    • 1999
  • In this paper, we designed a pipeline (15,9) Reed-solomon decoder. To compute the error locator polynomials, we used the Euclidean algorithm. This algorithm includes computation of inverse element. We avoided the inverse element calculation in this RS decoder by using ROMs. We designed this decoder using VHDL. Simulation results show that the designed decoder corrects three error symbols. We implemented this design through an Altera FPGA chip.

  • PDF

Reed Solomon Encoding System of 4-state Bar Code for Automatic Processing in Mail Items (우편물 자동처리를 위한 4-state 바코드 Reed Solomon 인코딩 시스템)

  • 박문성;송재관;황재각;남윤석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.47-50
    • /
    • 2000
  • Recently many efforts on the development of automatic processing system for delivery sequence sorting have been performed in ETRI , which requires the use of postal 4-state bar code system to encode delivery points. The 4-state bar code called postal 4-state bar code for high speed processing that has been specifically designed for information processing of logistics and automatic processing of the mail items. This paper describes a method of Reed-Solomon encoding for creating error correction codeword of 4-state bar code.

  • PDF

New Efficient Design of Reed-Solomon Encoder, Which has Arbitrary Parity Positions, without Galois Field Multiplier

  • An, Hyeong-Keon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.984-990
    • /
    • 2010
  • In Current Digital $C^3$ Devices(Communication, Computer, Consumer electronic devices), Reed-Solomon encoder is essentially used. For example we should use RS encoder in DSP LSI of CDMA Mobile and Base station modem, in controller LSI of DVD Recorder and that of computer memory(HDD or SSD memory). In this paper, we propose new economical multiplierless (also without divider) RS encoder design method. The encoder has Arbitrary parity positions.

Reed Resonance Problems of Large Vertical Pumps (대형 수직펌프의 리드공진 문제)

  • 최원호;양보석
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.425-433
    • /
    • 1994
  • A detailed investigation of a reed resonance for a vertical pump design has been conducted. The structural features of this class of pump lead to typical dynamic characteristics. Of particular importance is the fact that the pump assembly is suspended on a high column above the floor with a heavy motor on the top. Considerable amount of mass forces is involved and the vibration can cause damage to the pumps or to the foundation. It is shown that the reed resonance of the pump-motor system plays important role for design and troubleshooting purposes.

  • PDF

Design Optimization of the Arithmatic Logic Unit Circuit for the Processor to Determine the Number of Errors in the Reed Solomon Decoder (리드솔로몬 복호기에서 오류갯수를 계산하는 처리기의 산술논리연산장치 회로 최적화설계)

  • An, Hyeong-Keon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.649-654
    • /
    • 2011
  • In this paper, we show new method to find number of errors in the Reed-Solomon decoder. New design is much faster and has much simpler logic circuit than the former design method. This optimization was possible by very simplified square calculating circuit and parallel processing. The microcontroller of this Reed Solomon decoder can be used for data protection of almost all digital communication and consumer electronic devices.