• Title/Summary/Keyword: RED LEDs

Search Result 223, Processing Time 0.024 seconds

Plant Growth and Ascorbic Acid Content of Spinacia oleracea Grown under Different Light-emitting Diodes and Ultraviolet Radiation Light of Plant Factory System (식물공장시스템의 발광다이오드와 UVA 광원 하에서 자란 시금치 생육 및 아스코르브산 함량)

  • Park, Sangmin;Cho, Eunkyung;An, Jinhee;Yoon, Beomhee;Choi, Kiyoung;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The study aimed to determine effects of light emitting diode (LED) and the ultraviolet radiation (UVA) light of plant factory on plant growth and ascorbic acid content of spinach (Spinacia oleracea cv. Shusiro). Plants were grown in a NFT (Nutrient Film Technique) system for 28 days after transplanting with fluorescent light (FL, control), LEDs and UVA (Blue+UVA (BUV), Red and Blue (R:B(2:1)) + UVA (RBUV), Red+UVA (RUV), White LED (W), Red and Blue (R:B(2:1)), Blue (B), Red (R)) under the same light intensity ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and photoperiod (16/8h = day/night). All the light sources containing the R (R, RB, RUV, and RBUV) showed leaf epinasty symptom at 21 days after transplanting (DAT). Under the RUV treatment, the lengths of leaf and leaf petiole were significantly reduced and the leaf width was increased, lowering the leaf shape index, compared to the R treatment. Under the BUV, however, the lengths of leaf and leaf petiole were increased significantly, and the leaf number was increased compared to B. Under the RBUV treatment, the leaf length was significantly shorter than other treatments, while no significant difference between the RBUV and RB for the fresh and dry weights and leaf area. Dry weights at 28 days after transplanting were significantly higher in the R, RUV and BUV treatments than those in the W and FL. The leaf area was significantly higher under the BUV treatment. The ascorbic acid content of the 28 day-old spinach under the B was significantly higher, followed by the BUV, and significantly lower in FL and R. All the integrated data suggest that the BUV light seems to be the most suitable for growth and quality of hydroponically grown spinach in a plant factory.

Physico-Chemical Properties of Broccoli Sprouts Cultivated in a Plant Factory System with Different Lighting Conditions (식물공장 시스템에서 광원의 종류를 달리하여 재배한 브로콜리 새싹의 이화학적 특성)

  • Kim, Tae-Su;Lee, Sung-Pyo;Park, So-I;Lee, Jin-Young;Lee, Soo-Yeon;Jun, Hye-Ji
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1757-1763
    • /
    • 2011
  • The physico-chemical properties of broccoli sprouts cultivated in a plant factory system with different lighting conditions were investigated. We reported that there were significant differences among the chemical and nutritional properties of the broccoli sprouts grown under different light sources. Two kinds of sugars (glucose and fructose) were detected in the plants. The amount of glucose was 2.94~3.12% and that of fructose was 1.54~2.04%. Total chlorophyll was $1,157{\pm}0.004$ mg% and chlorophyll-a $777{\pm}0.01$ mg%. All over the test materials, 2 kinds of organic acids (citric acid and malic acid) were detected. The level of citric acid was 908~1,136 mg% and its highest level was under the (Blue LED) light source. The level of malic acid was 514~834 mg% and its highest level was under the (Red LED) light source. Seven different minerals were also analyzed. The amount of K was 518 mg% and its amount was significantly higher than that of Mg or Na. There were also negligible amounts of Zn, Fe and Cu. The amounts of vitamin A, C and E under the Red LED were, $860.62{\pm}0.02\;{\mu}gRE$, $134.570{\pm}0.14$ mg% and $1.44{\pm}0.1$ IU. The amounts under the Blue LED were, $432.48{\pm}0.05\;{\mu}gRE$, $137.05{\pm}0.1$ mg% and $1.11{\pm}0.12$ IU. The amounts under both Red and Blue LEDs were, $667.33{\pm}0.11\;{\mu}gRE$, $118.50{\pm}0.09$ mg% and $1.47{\pm}0.1$ IU. And finally, the amounts under a White LED were, $640.25{\pm}0.08\;{\mu}gRE$, $119.87{\pm}0.07$ mg% and $1.31{\pm}0.15$ IU. In this study, significant changes were shown in the chemical and nutritional properties of the broccoli sprouts. These findings indicate that LED light sources stimulated germination of the plants.

Effect of LED mixed light conditions on the glucosinolate pathway in brassica rapa (배추 유묘의 글루코시놀레이트 합성 기작에 미치는 LED 혼합광의 효과)

  • Moon, Junghyun;Jeong, Mi Jeong;Lee, Soo In;Lee, Jun Gu;Hwang, Hyunseung;Yu, Jaewoong;Kim, Yong-Rok;Park, Se Won;Kim, Jin A
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.245-256
    • /
    • 2015
  • In the agricultural industries, LEDs are used as supplementary, as well as main lighting sources in closed cultivation systems. In cultivation using artificial light sources, various light qualities have been tried to supplement fluorescent lamps to promote plant growth and metabolism. Microarray analysis of Brassica rapa seedlings under blue and fluorescent mixed with blue light conditions identified changes in three genes of the glucosinolate pathway. This attracted attention as functional materials highly expressed 3.6-4.6 fold under latter condition. We selected four more genes of the glucosinolate pathway from the Brassica database and tested their expression changes under fluorescent light mixed with red, green, and blue, respectively. Some genes increased expression under red and blue mixed conditions. The Bra026058, Bra015379, and Bra021429; the orthologous genes of CYP79F1, ST5a, and FMOGS-OX1 in Arabidopsis, are highly expressed in Brassica rapa under fluorescent mixed with blue light conditions. Further, Bra029355, Bra034180, Bra024634, and Bra022448; the orthologous genes of MAM1, AOP3, UGT74B1, and BCAT4 in Arabidopsis, are highly expressed in Brassica rapa under fluorescent mixed with red light conditions. The various light conditions had unique effects on the varieties of Brassica, resulting in differences in glucosinolate synthesis. However, in some varieties, glucosinolate synthesis increased under mixed blue light conditions. These results will help to construct artificial light facilities, which increase functional crops production.

Effects of Supplemental LED Lighting on Productivity and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) Grown on the Bottom Bed of the Two-Bed Bench System (2단 베드 시스템의 하단부에서 자란 딸기의 생산성 및 과일 품질에 미치는 보광 LED의 효과)

  • Choi, Hyo Gil;Jeong, Ho Jeong;Choi, Gyeong Lee;Choi, Su Hyun;Chae, Soo Cheon;Ann, Seoung Won;Kang, Hee Kyoung;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.199-205
    • /
    • 2018
  • The aim of this study was to confirm that effects of supplemental LED illumination on a strawberry yield and fruit quality when strawberry grown on a bottom bed to be deficient ambient light due to shading of a upper bed during cultivation by a two-bed bench system. A strawberry was cultivated as a drip irrigation system in the two-bed bench system filled with a strawberry exclusive media from October 2015 to January 2016. The upper and the bottom bed without LED illumination for growth of a strawberry were using as a control. For LED light treatments, from 10 am to 4 pm, we illuminated LEDs as $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light intensity by using blue, red, and mixing LED (blue plus red) on the strawberry plants of the bottom bed. In the yield of strawberry fruit, the strawberry grown on the bottom bed treated with the blue LED significantly increased compared with that of the bottom bed part control, and increased to by near 90% of the strawberry output of the upper bed part control. The soluble sugar content of strawberry fruit grown on the upper bed part control and on the bottom bed illuminated with blue or mixed LED was higher than that of red LED and the control of the bottom bed. The content of anthocyanin was the highest increased in the strawberry grown on the upper bed part control that received a lot of ambient light, however when comparing only the bottom bed, strawberry fruits grown on all LED treatments were higher than that of the control. Therefore, we considered that using of the blue LED light on the bottom bed of two-bed bench system during strawberry cultivation is advantageous for the increase of yield and improvement of fruit quality.

Poly(p-phenylenevinylene)s Derivatives Containing a New Electron-Withdrawing CF3F4Phenyl Group for LEDs

  • Jin, Young-Eup;Kang, Jeung-Hee;Song, Su-Hee;Park, Sung-Heum;Moon, Ji-Hyun;Woo, Han-Young;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.139-147
    • /
    • 2008
  • New PPV derivatives which contain electron-withdrawing CF3F4phenyl group, poly[2-(2-ethylhexyloxy)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (CF3F4P-PPV), and poly[2-(4-(2-etylhexyloxy)-phenyl)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (P-CF3F4P-PPV), have been synthesized by GILCH polymerization. As the result of the introduction of the electron-withdrawing CF3F4phenyl group to the phenyl backbone, the LUMO and HOMO energy levels of CF3F4P-PPV (3.14, 5.50 eV) and P-CF3F4P-PPV (3.07, 5.60 eV) were reduced. The PL emission spectra in solid thin film are more red-shifted over 50 nm and increased fwhm (full width at half maximum) than solution conditions by raising aggregation among polymer backbone due to electron withdrawing effect of 2,3,5,6-tetrafluoro-4-trifluoromethylphenyl group. The EL emission maxima of CF3F4P-PPV and P-CF3F4P-PPV appear at around 530-543 nm. The current density-voltage-luminescence (J-V-L) characteristics of ITO/PEDOT/polymer/Al devices of CF3F4P-PPV and P-CF3F4P-PPV show that turn-on voltages are around 12.5 and 7.0 V, and the maximum brightness are about 82 and 598 cd/m2, respectively. The maximum EL efficiency of P-CF3F4P-PPV (0.51 cd/A) was higher than that of CF3F4P-PPV (0.025 cd/A).

Optical and Structural Analysis of BaSi2O2N2:Eu Green Phosphor for High-Color-Rendering Lighting (고연색 백색 광원용 BaSi2O2N2:Eu 형광체의 광학·구조 특성 분석)

  • Lee, Sunghoon;Kang, Taewook;Kang, Hyeonwoo;Jeong, Yongseok;Kim, Jongsu;Heo, Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.437-442
    • /
    • 2019
  • Green $BaSi_2O_2N_2:0.02Eu^{2+}$ phosphor is synthesized through a two-step solid state reaction method. The first firing is for crystallization, and the second firing is for reduction of $Eu^{3+}$ into $Eu^{2+}$ and growth of crystal grains. By thermal analysis, the three-time endothermic reaction is confirmed: pyrolysis reaction of $BaCO_3$ at $900^{\circ}C$ and phase transitions at $1,300^{\circ}C$ and $1,400^{\circ}C$. By structural analysis, it is confirmed that single phase [$BaSi_2O_2N_2$] is obtained with Cmcm space group of orthorhombic structure. After the first firing the morphology is rod-like type and, after the second firing, the morphology becomes round. Our phosphor shows a green emission with a peak position of 495 nm and a peak width of 32 nm due to the $4f^65d^1{\rightarrow}4f^7$ transition of $Eu^{2+}$ ion. An LED package (chip size $5.6{\times}3.0mm$) is fabricated with a mixture of our green $BaSi_2O_2N_2$, and yellow $Y_3Al_5O_{12}$ and red $Sr_2Si_5N_8$ phosphors. The color rendering index (90) is higher than that of the mixture without our green phosphor (82), which indicates that this is an excellent green candidate for white LEDs with a deluxe color rendering index.

Carbon Dioxide Fixation and Light Source Effects of Spirulina platensis NIES 39 for LED Photobioreactor Design (Spirulina platensis NIES 39를 이용한 LED 광생물반응기에서의 이산화탄소 고정화와 광원 효과)

  • Kim, Ji-Youn;Joo, Hyun;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Optimal culture conditions of Spirulina platensis NIES 39 have been established using different types of light sources. Several types of photobioreactors were designed and the increase of biomass, the amount of $CO_2$, fixation and the production of chlorophyll content were studied. The result revealed that the input conditions of a 10 min period per 4 h at the condition of 5% $CO_2$ and 0.1 vvm, were excellent in the growth. The growth showing the maximum biomass accumulation is limited to 1.411 g/L when using the fluorescent bulb and the low powered surface mount device (SMD) type LEDs which were equipped-inside in the photobioreactor. However, the biomass exceeded up to 1.758 g/L level when a high powered red LED (color temperature : 12000 K) photobioreactor system was used. The $CO_2$ fixation speed and rate were increased. Although the total production of chlorophyll content undergoes a proportional increase in the biomass, the net content per dry cell weight (DCW) showed the higher production with a blue LED (color temperature : 7500 K) light than that of any other wavelengths. The carbon dioxide loss was marked as 0.15% of the inlet gas (5% $CO_2/Air$, v/v) at the maximum biomass culture condition.

Effects of Artificial Light Sources on the Photosynthesis, Growth and Phytochemical Contents of Butterhead Lettuce (Lactuca sativa L.) in the Plant Factory (식물공장에서 인공광원의 종류가 반결구상추의 광합성, 생육 및 기능성물질 함량에 미치는 영향)

  • Kim, Dong Eok;Lee, Hye Jin;Kang, Dong Hyeon;Lee, Gong In;Kim, You Ho
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.392-399
    • /
    • 2013
  • This study aimed to investigate responses of photosynthesis, plant growth, and phytochemical contents to different artificial light sources for 'Seneca RZ' and 'Gaugin RZ' two butterhead lettuce (Lactuca sativa L.). In this study, fluorescent lamps (FL), three colors LEDs (red, blue and white, 5 : 4 : 1; RBW) and metalhalide lamps (MH) were used as artificial lighting sources. Photoperiod, air temperature, relative humidity, EC, and pH in a cultivation system were maintained at 16/8 h, $25/15^{\circ}C$, 60~70%, $1.4{\pm}0.2dS{\cdot}m^{-1}$, and $6.0{\pm}0.5$, respectively. The photosynthetic rate of both two butterhead lettuce were the highest under RBW in middle growth stage. However, in late growth stage, the photosynthetic rate of both two butterhead lettuce were higher under RBW and MH than FL. The light sources showed significant results for plant growth but those effects were different to variety. Fresh and dry weight of 'Gaugin RZ' butterhead lettuce under MH were heavier than other lights in all growth stages. Growth of 'Seneca RZ' butterhead lettuce was maximized highest under MH in middle growth stage and FL in late growth stage. In the leaf tissue of 'Seneca RZ' butterhead lettuce, tipburn symptom occurred under all light sources and in the leaf tissue of 'Gaugin RZ' butterhead lettuce, it occurred under two light sources except for fluorescent lamps in late growth stage. kinds of lamp affect plant growth more than plant quality. Relative growth rate of both two butterhead lettuce was faster in middle growth stage than late stage. Growth of 'Gaugin RZ' was shown by kinds of lamp in middle growth stage and but it was not significantly affected by light sources and variety in late stage. Most of the phytochemical contents of two butterhead lettuce were significantly affected by different light sources. Contents of all vitamins showed higher than other light sources on RBW for both two lettuce, especially ${\beta}$-Carotene content of 'Gaugin RZ' was the highest. Plant growth, photosynthesis, and phytochemical contents were observed significant effects by different light sources for two butterhead lettuce but those effects were highly different between variety and kinds of phytochemicals. Therefore, the selection of optimum light source should be considered by variety and kinds of phytochemicals in the plant factory.

Hydroponic Nutrient Solution and Light Quality Influence on Lettuce (Lactuca sativa L.) Growth from the Artificial Light Type of Plant Factory System (인공광 식물공장에서 수경배양액 및 광질 조절이 상추 실생묘 생장에 미치는 영향)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Hong, Seung-Gil;Lee, Jae-Su;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.225-236
    • /
    • 2019
  • BACKGROUND: Hydroponics is one of the methods for evaluating plant production using the inorganic nutrient solutions, which is applied under the artificial light conditions of plant factory system. However, the application of the conventional inorganic nutrients for hydroponics caused several environmental problems: waste from culture mediums and high nitrate concentration in plants. Organic nutrients are generally irrigated as a supplementary fertilizer for plant growth promotion under field or greenhouse conditions. Hydroponic culture using organic nutrients derived from the agricultural by-products such as dumped stems, leaves or immature fruits is rarely considered in plant factory system. Effect of organic or conventional inorganic nutrient solutions on the growth and nutrient absorption pattern of green and red leaf lettuces was investigated in this experiment under fluorescent lamps (FL) and mixture Light-Emitting Diodes (LEDs). METHODS AND RESULTS: Single solution of tomatoes (TJ) and kales (K) deriving from agricultural by-products including leaves or stems and its mixed solution (mixture ration 1:1) with conventional inorganic Yamazaki (Y) were supplied for hydroponics under the plant factory system. The Yamazaki solution was considered as a control. 'Jeockchima' and 'Cheongchima' lettuce seedlings (Lactuca sativa L.) were used as plant materials. The seedlings which developed 2~3 true leaves were grown under the light qualities of FL and mixed LED lights of blue plus red plus white of 1:2:1 mixture in energy ratio for 35 days. Light intensity of the light sources was controlled at 180 μmol/㎡/s on the culture bed. The single and mixture nutrient solutions of organic and/or inorganic components which controlled at 1.5 dS/m EC and 5.8 pH were regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Number of unfolded leaves of the seedlings grown under the single or mixed nutrient solutions were significantly increased compared to the conventional Y treatment. Leaf extension of 'Jeockchima' under the mixture LED radiation condition was not affected by Y and YK or YTJ mixture treatments. SPAD value in 'Jeockchima' leaves exposed by FL under the YK mixture medium was approximately 45 % higher than under conventional Y treatment. Otherwise, the maximum SPAD value in the leaves of 'Cheongchima' seedlings was shown in YK treatment under the mixture LED lights. NO3-N contents in Y treatment treated with inorganic nutrient at the end of the experiment were up to 75% declined rather than increased over 60 % in the K and TJ organic treatment. CONCLUSION: Growth of the seedlings was affected by the mixture treatments of the organic and inorganic solutions, although similar or lower dry weight was recorded than in the inorganic treatment Y under the plant factory system. Treatment Y containing the highest NO3-N content among the considered nutrients influenced growth increment of the seedlings comparing to the other nutrients. However effect of the higher NO3-N content in the seedling growth was different according to the light qualities considered in the experiment as shown in leaf expansion, pigmentation or dry weight promotion under the single or mixed nutrients.

Increased Growth by LED and Accumulation of Functional Materials by Florescence Lamps in a Hydroponics Culture System for Angelica gigas (당귀의 수경재배에서 LED 광원에 의한 생장 증가와 형광등에 의한 기능성물질 축적)

  • Lee, Gong-In;Kim, Hong-Ju;Kim, Sung-Jin;Lee, Jong-Won;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • Angelica gigas, belonging family Apiaceae, is a perennial and famous medical plant growing in Korea, Japan, and China. The aims of this study was to analyze the growth and accumulated Decursin and its precursor Decursinol angelate of A.gigas grown under fluorescent lamp and LED. A. gigas 'Manchu' were sowed and managed for seedlings stage in a glass house for 4 weeks. One hundred twenty seedlings with 3 true leafs were transplanted at an ebb & flow system with fluorescent lamp and LED [red: peak wavelength 660nm, blue: peak wavelength 455 nm, white = 3:2:4 ratio] irradiated at $180{\pm}7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at the top of plant canopy for 5 weeks. The number of leaves increased by 13.5% in the LED treatment, though it is not statistically significant. Leaf length/width ratio of A. gigas grown under the fluorescent lamps was 24% bigger than the LED treatment and also the stem was 13% larger. Maximum root length was similar to both groups. Fresh weight and dry weight of shoots grown under the LED increased by 50% and 42% and the both weights of roots increased by 125% and 45%, respectively. The contents of Decursin and Decursinol angelate grown under the florescent lamps were larger than LED by 188% and 27% in shoot and 78% and 8% in root. The contents of Decursin and Decursinol angelate per plant grown under LED and florescent lamps were 132mg and 122mg. In conclusion, functional materials in A. gigas were increased by florescent light and its growth was promoted by LEDs light.