• Title/Summary/Keyword: RECYCLE

Search Result 1,266, Processing Time 0.023 seconds

Analysis of Recycle Manufacturing Systems of Assemble Products (조립 제품의 순환형 생산시스템 해석)

  • Ree, Sang-Bok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.3
    • /
    • pp.413-426
    • /
    • 1996
  • Modern society, as a result of high industrial technology, is characterized by a series of mass production, moss consumption and mass disposal. As the mass disposal is known as the major culprit of destroying ecological system of our environment, human prosperity is in turn threatened by this indiscrete activities. Under current industrial technology which pursuit maximum profit, environmental problems could not be solved. This paper proposes recycle manufacturing systems of assemble products as a measure of current non-recycle manufacturing systems. Products are also composed of a number of ports. All parts are represented by a function of time cost performance variable as reuse level. We develop on information systems which give all the information on reused and recycled parts. We try to implement this result on a real fields. We confide ourselves to the contribution to on effective solution of environmental problems and to give profit to assembly manufacturing and consumers.

  • PDF

Dialysis in double-pass cross-flow rectangular membrane modules with external recycle for improved performance

  • Yeh, Ho-Ming
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.75-89
    • /
    • 2011
  • The predicting equations for mass transfer rate in cross-flow rectangular dialyzers with double flow and recycle, have been derived by mass balances. The recycling operation has two conflicting effects. One is the desirable effect of the increase in fluid velocity, resulting in an increased mass transfer coefficient. The other is the undesirable effect of the reduction in concentration difference due to remixing, resulting in decreased mass-transfer driving force. In contrast a single-pass device without recycling, considerable improvement in mass transfer is achieved if the cross-flow rectangular dialyzer of same size is operated with double pass and external recycling. It is concluded that recycle can enhance mass transfer, especially for larger reflux ratio.

High xylitol production rate of osmophilic yeast Candida tropicalis by long-term cell-recycle fermentation in a submerged membrane bioreactor

  • Kwon, Seun-Gyu;Park, Seung-Won;Oh, Deok-Kun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.272-276
    • /
    • 2005
  • Candida tropicalis, an osmophilic strain isolated from honeycomb, produced xylitol at a maximal volumetric production rate of 3.5 g $l^{-1}$ $h^{-1}$ from an initial xylose concentration of 200 g $l^{-1}$. Even with a very high xylose concentration, e.g., 350 g $l^{-1}$, this strain produced xylitol at a moderate rate of 2.07 g $l^{-1}$ $h^{-1}$. In a fed-batch fermentation of xylose and glucose, 260 g $l^{-1}$ of xylose was added, and xylitol production was 234 g $l^{-1}$ for 48 h, corresponding to a rate of 4.88 g $l^{-1}$ $h^{-1}$. To increase the xylitol production rate, cells were recycled in a submerged membrane bioreactor with suction pressure and air sparging. In cell-recycle fermentation, the average concentration of xylitol produced per recycle round, total fermentation time, volumetric production rate, and product yield for ten rounds were 180 g $l^{-1}$, 195 h, 8.5 g $l^{-1}$ $h^{-1}$, and 85%, respectively. When cell-recycle fermentation was started with the cell mass contratrated two-fold after batch fermentation and was performed for ten recycle rounds, we achieved a very high production rate of 12 g $l^{-1}$ $h^{-1}$. The production rate and total amount of xylitol produced in cell-recycle fermentation were 3.4 and 11 times higher than in batch fermentation, respectively.

  • PDF

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

Developement of Dynamic Process Simulator I. (화학공정 비정상상태 모사기 개발 I)

  • 이강주;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.482-487
    • /
    • 1988
  • A sequential-clustered integrator based on GEAR method is developed for the purpose of dynamic simulation of chemical processes. And a single simulator structure capable of employing various integration approaches is designed and its efficiency and flexiblity is evaluated. Sequential integration method is superior to simultaneous method for the process without recycle, but simultaneous method is very powerful for the coupled process with recycle.

  • PDF

A Study on the Development of $CO_2$ Recycle Oxy-Fuel Combustion Heating System ($CO_2$ 재순환형 산소연소 가열시스템 개발에 관한 연구)

  • Jeong Yu-Seok;Lee Eun-Kyung;Go Chang-Bok;Jang Byung-Lok;Han Hyung-Kee;Noh Dong-Soon
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2006.05a
    • /
    • pp.412-419
    • /
    • 2006
  • An Experimental study was conducted on $CO_{2}$ recycle combustion heating system using pure oxygen instead of conventional air as an oxidant, which is thereby producing a flue gas of mostly $CO_{2}$ and water vapor($H_{2}O$ and water vapor($H_{2}O$) and resulting in higher $CO_{2}$ concentration. The advantages of the system are not only the ability to control high temperatures characteristic of oxygen combustion with recycling $CO_{2}$ but also the possibility to reduce NOx emission in the flue gas. A small scale industrial reheating furnace simulator and specially designed variable flame burner were used to characterize the $CO_{2}$ recycle oxy-fuel combustion, such as the variations of furnace pressure, temperature and composition in the flue gas during recycle. It was found that $CO_{2}$ concentration in the flue gas was about 80% without $CO_{2}$recycle. The furnace temperature and pressure and pressure were decreased due to recycle and the NOx emission was also reduced to maintain under 100ppm.

  • PDF

Effect of HRT and Internal Recycle Ratio on Removal of Organic and Nitrogen in Swine Wastewater by Anoxic-Oxic Process Combined with Membrane (분리막이 결합된 무산소·호기 공정을 이용한 축산폐수처리에서 수리학적체류시간 및 내부반송율이 유기물 및 질소제거에 미치는 영향)

  • Whang, gye dae;Lee, bong hee;Lee, hyun duk
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.603-609
    • /
    • 2004
  • The objective of this study was to determine the optimal operation conditions in an anoxic oxic process to eliminate both organic and nitrogen matters in swine wastewater. For the purpose of this, the removal efficiency was evaluated with various HRTs and internal recycling ratio. During the whole 580 days of experiment, HRTs had been gradually decreased in an order of 20, 14, 12 and l0days, and the internal recycle ratio was kept at 20Q. So as to determine the effect of the internal recycle ratio on the nitrogen removal, the internal recycle ratio had been gradually increased from 20Q to 50Q while HRT was maintained at 12days. As a result, it was shown that the removal efficiency of organic matter was above 95% regardless of changing of HRTs. The average influent concentration of TCODcr and SCODcr were 24,854 mg/L and 18,920 mg/L, respectively. Average removal efficiency of TKN was shown to be nearly 98% when HRT was kept at 12days; however, the $NH_4{^+}-N$ concentration of effluent was shown to be increased when the loading rate of $NH_4{^+}-N$ was increased to $0.602 kgNH_4{^+}-N/m^3$-day by means of decreasing HRT to 10days. It was concluded that nitrogen loading rates should be more considered rather than organic loading rates in case of determining an optimal HRT. When gradually increasing the internal recycle ratio from 20Q to 50Q, the removal efficiency of organic matters and TKN were 96% and 98%, respectively so that no significant changes in removal efficiency was detected. However, when the internal recycle ratio was kept at 50Q, it was revealed that the $NO_3-N$ concentration of effluent seemed to drop and the average $NO_3-N$ concentration of effluent was around 52 mg/L.

A Study on Hydration Properties of Recycled Cement Mortar using Admixture Materials (혼화재료를 혼입한 재생시멘트 모르터의 수화특성에 관한 연구)

  • Park, Cha-Won;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.79-86
    • /
    • 2004
  • The purpose of this study was the development of a recycling process to recover the hydraulic properties of hydration products which account for a large proportion of cementitious powder from concrete waste. This process was performed to recycle cementitious powder as recycle cement. Therefore, after the theoretical consideration of the properties of recycle process of recycled aggregates and cementitious powder, we investigated the hydraulic properties of cementitious powder under various temperature conditions in hardened mortar which was modeled on concrete waste. And we analyzed properties of chemical reactions of recycled cement with admixture materials such as Fly-Ash, Blast Furnace Slag As a result of the experiment, the most effective method to recover hydraulic properties of the cementitious powder from concrete waste was condition of burning at 700℃ for 120 minute. And it is shown that the fluidity of mortar was decreased rapidly when the burning temperature of recycle cement was increased. However, the compressive strength and fluidity were improved significantly when admixture materials such as Fly-Ash or Blast Furnace Slag was added.

The Characterization of Recycle PE/PET/TPE Blend with Compatibilizers (폐 PE/PET/TPE Blends 제조와 상용화에 따른 특성 분석)

  • Kim, Dong-Hyun;Hwang, In-Sung;Kim, Jeong-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.423-430
    • /
    • 2012
  • This study focused on the characterization of recycle PE/PET/TPE blend with compatibilizers. The heat resistance and impact strength of a weak point on PET/HDPE blend has been improved. TPE added polyester-based recycle heat-resistant properties to $150^{\circ}C$ showed more than $50^{\circ}C$ higher than HDPE added. Elastomer applied is a significant increase in the impact strength, and then it is possible to apply for safety materials in industries requiring heat-resistance and elasticity. Also using PET blend compatibilizer improves the strength of the polyolefin resin. The mechanical properties of recycle HDPE and PET blend has been greatly improved, and the reduction in the size of the dispersed phase by the addition of compatibilizers on morphology characteristics were observed uniformity becomes.