• Title/Summary/Keyword: RDF Triples

Search Result 26, Processing Time 0.028 seconds

Extending Semantic Image Annotation using User- Defined Rules and Inference in Mobile Environments (모바일 환경에서 사용자 정의 규칙과 추론을 이용한 의미 기반 이미지 어노테이션의 확장)

  • Seo, Kwang-won;Im, Dong-Hyuk
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.158-165
    • /
    • 2018
  • Since a large amount of multimedia image has dramatically increased, it is important to search semantically relevant image. Thus, several semantic image annotation methods using RDF(Resource Description Framework) model in mobile environment are introduced. Earlier studies on annotating image semantically focused on both the image tag and the context-aware information such as temporal and spatial data. However, in order to fully express their semantics of image, we need more annotations which are described in RDF model. In this paper, we propose an annotation method inferencing with RDFS entailment rules and user defined rules. Our approach implemented in Moment system shows that it can more fully represent the semantics of image with more annotation triples.

Scalable RDFS Reasoning using Logic Programming Approach in a Single Machine (단일머신 환경에서의 논리적 프로그래밍 방식 기반 대용량 RDFS 추론 기법)

  • Jagvaral, Batselem;Kim, Jemin;Lee, Wan-Gon;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.762-773
    • /
    • 2014
  • As the web of data is increasingly producing large RDFS datasets, it becomes essential in building scalable reasoning engines over large triples. There have been many researches used expensive distributed framework, such as Hadoop, to reason over large RDFS triples. However, in many cases we are required to handle millions of triples. In such cases, it is not necessary to deploy expensive distributed systems because logic program based reasoners in a single machine can produce similar reasoning performances with that of distributed reasoner using Hadoop. In this paper, we propose a scalable RDFS reasoner using logical programming methods in a single machine and compare our empirical results with that of distributed systems. We show that our logic programming based reasoner using a single machine performs as similar as expensive distributed reasoner does up to 200 million RDFS triples. In addition, we designed a meta data structure by decomposing the ontology triples into separate sectors. Instead of loading all the triples into a single model, we selected an appropriate subset of the triples for each ontology reasoning rule. Unification makes it easy to handle conjunctive queries for RDFS schema reasoning, therefore, we have designed and implemented RDFS axioms using logic programming unifications and efficient conjunctive query handling mechanisms. The throughputs of our approach reached to 166K Triples/sec over LUBM1500 with 200 million triples. It is comparable to that of WebPIE, distributed reasoner using Hadoop and Map Reduce, which performs 185K Triples/sec. We show that it is unnecessary to use the distributed system up to 200 million triples and the performance of logic programming based reasoner in a single machine becomes comparable with that of expensive distributed reasoner which employs Hadoop framework.

Materialized View Selection Scheme for enhancing RDF Query Performance (RDF 질의 처리 성능 향상을 위한 실체 뷰 선택 기법)

  • Park, Jaeyeol;Yoon, Sangwon;Choi, Kitae;Lim, Jongtae;Lee, Byoungyup;Shin, Jaeryong;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.24-34
    • /
    • 2015
  • With the development of the semantic web, a large amount of data being produced nowadays is in RDF format. RDF is represented by a triple. An RDF database consisting of triples requires the high cost of join query processing. Materialized view is known as a scheme to reduce the query processing cost by accessing materialized views without accessing the database. It is physically stored the results or the intermediate results of the query processing in a storage area. In this paper, we propose a materialized view selection scheme by using decision tree to solve such a problem. The decision tree considers the size and maintenance costs of the materialized view as well as the profit of query response times. It is shown through performance evaluation that the proposed scheme increases the number of materialized views in the limited storage space and decreases the update rates of the materialized views.

Join Query Performance Optimization Based on Convergence Indexing Method (융합 인덱싱 방법에 의한 조인 쿼리 성능 최적화)

  • Zhao, Tianyi;Lee, Yong-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.109-116
    • /
    • 2021
  • Since RDF (Resource Description Framework) triples are modeled as graph, we cannot directly adopt existing solutions in relational databases and XML technology. In order to store, index, and query Linked Data more efficiently, we propose a convergence indexing method combined R*-tree and K-dimensional trees. This method uses a hybrid storage system based on HDD (Hard Disk Drive) and SSD (Solid State Drive) devices, and a separated filter and refinement index structure to filter unnecessary data and further refine the immediate result. We perform performance comparisons based on three standard join retrieval algorithms. The experimental results demonstrate that our method has achieved remarkable performance compared to other existing methods such as Quad and Darq.

Change Acceptable In-Depth Searching in LOD Cloud for Efficient Knowledge Expansion (효과적인 지식확장을 위한 LOD 클라우드에서의 변화수용적 심층검색)

  • Kim, Kwangmin;Sohn, Yonglak
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.171-193
    • /
    • 2018
  • LOD(Linked Open Data) cloud is a practical implementation of semantic web. We suggested a new method that provides identity links conveniently in LOD cloud. It also allows changes in LOD to be reflected to searching results without any omissions. LOD provides detail descriptions of entities to public in RDF triple form. RDF triple is composed of subject, predicates, and objects and presents detail description for an entity. Links in LOD cloud, named identity links, are realized by asserting entities of different RDF triples to be identical. Currently, the identity link is provided with creating a link triple explicitly in which associates its subject and object with source and target entities. Link triples are appended to LOD. With identity links, a knowledge achieves from an LOD can be expanded with different knowledge from different LODs. The goal of LOD cloud is providing opportunity of knowledge expansion to users. Appending link triples to LOD, however, has serious difficulties in discovering identity links between entities one by one notwithstanding the enormous scale of LOD. Newly added entities cannot be reflected to searching results until identity links heading for them are serialized and published to LOD cloud. Instead of creating enormous identity links, we propose LOD to prepare its own link policy. The link policy specifies a set of target LODs to link and constraints necessary to discover identity links to entities on target LODs. On searching, it becomes possible to access newly added entities and reflect them to searching results without any omissions by referencing the link policies. Link policy specifies a set of predicate pairs for discovering identity between associated entities in source and target LODs. For the link policy specification, we have suggested a set of vocabularies that conform to RDFS and OWL. Identity between entities is evaluated in accordance with a similarity of the source and the target entities' objects which have been associated with the predicates' pair in the link policy. We implemented a system "Change Acceptable In-Depth Searching System(CAIDS)". With CAIDS, user's searching request starts from depth_0 LOD, i.e. surface searching. Referencing the link policies of LODs, CAIDS proceeds in-depth searching, next LODs of next depths. To supplement identity links derived from the link policies, CAIDS uses explicit link triples as well. Following the identity links, CAIDS's in-depth searching progresses. Content of an entity obtained from depth_0 LOD expands with the contents of entities of other LODs which have been discovered to be identical to depth_0 LOD entity. Expanding content of depth_0 LOD entity without user's cognition of such other LODs is the implementation of knowledge expansion. It is the goal of LOD cloud. The more identity links in LOD cloud, the wider content expansions in LOD cloud. We have suggested a new way to create identity links abundantly and supply them to LOD cloud. Experiments on CAIDS performed against DBpedia LODs of Korea, France, Italy, Spain, and Portugal. They present that CAIDS provides appropriate expansion ratio and inclusion ratio as long as degree of similarity between source and target objects is 0.8 ~ 0.9. Expansion ratio, for each depth, depicts the ratio of the entities discovered at the depth to the entities of depth_0 LOD. For each depth, inclusion ratio illustrates the ratio of the entities discovered only with explicit links to the entities discovered only with link policies. In cases of similarity degrees with under 0.8, expansion becomes excessive and thus contents become distorted. Similarity degree of 0.8 ~ 0.9 provides appropriate amount of RDF triples searched as well. Experiments have evaluated confidence degree of contents which have been expanded in accordance with in-depth searching. Confidence degree of content is directly coupled with identity ratio of an entity, which means the degree of identity to the entity of depth_0 LOD. Identity ratio of an entity is obtained by multiplying source LOD's confidence and source entity's identity ratio. By tracing the identity links in advance, LOD's confidence is evaluated in accordance with the amount of identity links incoming to the entities in the LOD. While evaluating the identity ratio, concept of identity agreement, which means that multiple identity links head to a common entity, has been considered. With the identity agreement concept, experimental results present that identity ratio decreases as depth deepens, but rebounds as the depth deepens more. For each entity, as the number of identity links increases, identity ratio rebounds early and reaches at 1 finally. We found out that more than 8 identity links for each entity would lead users to give their confidence to the contents expanded. Link policy based in-depth searching method, we proposed, is expected to contribute to abundant identity links provisions to LOD cloud.

Efficient Reasoning Using View in DBMS-based Triple Store (DBMS기반 트리플 저장소에서 뷰를 이용한 효율적인 추론)

  • Lee, Seungwoo;Kim, Jae-Han;You, Beom-Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.74-78
    • /
    • 2009
  • Efficient reasoning has become important for improving the performance of ontology systems as the size of ontology grows. In this paper, we introduce a method that efficiently performs reasoning of RDFS entailment rules (i.e., rdfs7 and rdfs9 rules) and OWL inverse rule using views in the DBMS-based triple sotre. Reasoning is performed by replacing reasoning rules with the corresponding view definition and storing RDF triples into the structured triple tables. When processing queries, the views is referred instead of original tables. In this way, we can reduce the time needed for reasoning and also obtain the space-efficiency of the triple store.

  • PDF

A Study on Conversion Methods for Generating RDF Ontology from Structural Terminology Net (STNet) based on RDB (관계형 데이터베이스 기반 구조적학술용어사전(STNet)의 RDF 온톨로지 변환 방식 연구)

  • Ko, Young Man;Lee, Seung-Jun;Song, Min-Sun
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.2
    • /
    • pp.131-152
    • /
    • 2015
  • This study described the results of converting RDB to RDF ontology by each of R2RML method and Non-R2RML method. This study measured the size of the converted data, the conversion time per each tuple, and the response speed to queries. The STNet, a structured terminology dictionary based on RDB, was served as a test bed for converting to RDF ontology. As a result of the converted data size, Non-R2RML method appeared to be superior to R2RML method on the number of converted triples, including its expressive diversity. For the conversion time per each tuple, Non-R2RML was a little bit more faster than R2RML, but, for the response speed to queries, both methods showed similar response speed and stable performance since more than 300 numbers of queries. On comprehensive examination it is evaluated that Non-R2RML is the more appropriate to convert the dynamic RDB system, such as the STNet in which new data are steadily accumulated, data transformation very often occurred, and relationships between data continuously changed.

A Ranking Algorithm for Semantic Web Resources: A Class-oriented Approach (시맨틱 웹 자원의 랭킹을 위한 알고리즘: 클래스중심 접근방법)

  • Rho, Sang-Kyu;Park, Hyun-Jung;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.31-59
    • /
    • 2007
  • We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.

Knowledge Map Service based on Ontology of Nation R&D Information (국가R&D정보에 대한 온톨로지 기반 지식맵 서비스)

  • Kim, Sun-Tae;Lee, Won-Goo
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.251-260
    • /
    • 2016
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patent, and project reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer the further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a RDB-to-Triples transformer is implemented. Lastly, we show an experiment on R&D data integration using the lightweight ontology, triples generation, and visualization and navigation of the knowledge map.

Implementation of Policy based In-depth Searching for Identical Entities and Cleansing System in LOD Cloud (LOD 클라우드에서의 연결정책 기반 동일개체 심층검색 및 정제 시스템 구현)

  • Kim, Kwangmin;Sohn, Yonglak
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.67-77
    • /
    • 2018
  • This paper suggests that LOD establishes its own link policy and publishes it to LOD cloud to provide identity among entities in different LODs. For specifying the link policy, we proposed vocabulary set founded on RDF model as well. We implemented Policy based In-depth Searching and Cleansing(PISC for short) system that proceeds in-depth searching across LODs by referencing the link policies. PISC has been published on Github. LODs have participated voluntarily to LOD cloud so that degree of the entity identity needs to be evaluated. PISC, therefore, evaluates the identities and cleanses the searched entities to confine them to that exceed user's criterion of entity identity level. As for searching results, PISC provides entity's detailed contents which have been collected from diverse LODs and ontology customized to the content. Simulation of PISC has been performed on DBpedia's 5 LODs. We found that similarity of 0.9 of source and target RDF triples' objects provided appropriate expansion ratio and inclusion ratio of searching result. For sufficient identity of searched entities, 3 or more target LODs are required to be specified in link policy.