• Title/Summary/Keyword: RDF Schema

Search Result 69, Processing Time 0.025 seconds

On Developing a Semantic Annotation Tool for Managing Metadata of Web Documents based on XMP and Ontology (웹 문서의 메타데이터 관리를 위한 XMP 및 온톨로지 기반의 시맨틱 어노테이션 지원도구 개발)

  • Yang, Kyoung-Mo;Hwang, Suk-Hyung;Choi, Sung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1585-1600
    • /
    • 2009
  • The goal of Semantic Web is to provide efficient and effective semantic search and web services based on the machine-processable semantic information of web resources. Therefore, the process of creating and adding computer-understandable metadata for a variety of web contents, namely, semantic annotation is one of the fundamental technologies for the semantic web. Recently, in order to manage annotation metadata, direct approach for embedding metadata into the document is mainly used in semantic annotation. However, many semantic annotation tools for web documents have been mainly worked with HTML documents, and most of these tools do not support semantic search functionalities using the metadata. In this paper, based on these problems and previous works, we propose the Ontology-based Semantic Annotation tool(OSA) to efficiently support semantic annotation for web documents(such as HTML, PDF). We define a semantic annotation model that represents ontological-semantic information by using RDFS(RDF Schema). Based on XMP(eXtensible Metadata Platform) standard, the model is encoded directly into the document. By using OSA with XMP, user can perform semantic annotation on web documents which are able to keep compatibility for managing annotation metadata. Eventually, the integrated semantic annotation metadata can be used effectively in semantic search for a variety of web contents.

A Ranking Algorithm for Semantic Web Resources: A Class-oriented Approach (시맨틱 웹 자원의 랭킹을 위한 알고리즘: 클래스중심 접근방법)

  • Rho, Sang-Kyu;Park, Hyun-Jung;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.31-59
    • /
    • 2007
  • We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.

Semantic-based Keyword Search System over Relational Database (관계형 데이터베이스에서의 시맨틱 기반 키워드 탐색 시스템)

  • Yang, Younghyoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.91-101
    • /
    • 2013
  • One issue with keyword search in general is its ambiguity which can ultimately impact the effectiveness of the search in terms of the quality of the search results. This ambiguity is primarily due to the ambiguity of the contextual meaning of each term in the query. In addition to the query ambiguity itself, the relationships between the keywords in the search results are crucial for the proper interpretation of the search results by the user and should be clearly presented in the search results. We address the keyword search ambiguity issue by adapting some of the existing approaches for keyword mapping from the query terms to the schema terms/instances. The approaches we have adapted for term mapping capture both the syntactic similarity between the query keywords and the schema terms as well as the semantic similarity of the two and give better mappings and ultimately 50% raised accurate results. Finally, to address the last issue of lacking clear relationships among the terms appearing in the search results, our system has leveraged semantic web technologies in order to enrich the knowledgebase and to discover the relationships between the keywords.

A Study on Developing an Adaptive R&D Information Service Portal (연구 활동 지원을 위한 적응형 연구정보 지원 포털 구축에 관한 연구)

  • Choi, Sung-Pil;Cho, Hyun-Yang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.41 no.4
    • /
    • pp.229-250
    • /
    • 2007
  • This paper suggested a way to solve the problems by using domain experts who are already in the significant level of knowledge in those fields. For the purpose of achieving our goal, a very simple and efficient approach to construct the knowledge-base which can play an important role in providing researchers with essential information in need was proposed. In addition, the Adaptive R&D Information Service Portal with a new schema structure and a construction method of representing expert's knowledge efficiently was developed. With the simplicity and expandability of the proposed system it can be a good model for a similar system to be developed.

Study on the Automatic Generation of DB Schema in URI Server (URI 서버 내 DB 스키마 자동 생성 연구)

  • Jung, Hanmin;Lee, MiKyung;Kang, In-Su;Sung, Won-Kyung
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.107-113
    • /
    • 2007
  • 본 연구는 시맨틱 데이터 정합성 검사와 RDF 트리플 생성 기능을 가진 URI 서버 내 DB 스키마의 자동 생성 방안을 기술한다. URI 서버는 시맨틱 웹 기술 기반 프레임워크 구성에 필요한 핵심 엔진으로서 인스턴스 생성 관리기, 검색 엔진, 추론 엔진 등과의 상호 작용을 통해 시맨틱 데이터를 서비스한다. 도메인이 바뀌거나 서비스가 변경되는 경우 DB 스키마를 전문가에 의해 수작업으로 생성함으로써 서비스 환경 변화에 즉각 대응하지 못하는 문제점을 가진 기존 URI 서버를, 적재되는 온톨로지에 따라 DB 스키마를 동적으로 자동 생성하는 방식으로 변경함으로써 다양한 응용 분야와 도메인에의 높은 이식성(Portability)을 보장할 수 있도록 한다. 기반정보 온톨로지, 응용 온톨로지, 개인화 온톨로지 등 3개 온톨로지 스키마와 11만 건 이상의 Citeseer Open Access Metadata로부터 추출된 인스턴스를 대상으로 한 실험을 통해 URI 서버 내 DB 스키마 자동 생성 가능성을 실증하였다.

  • PDF

Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base (지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구)

  • Kim, JaeHun;Lee, Myungjin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.43-61
    • /
    • 2019
  • Development of technologies in artificial intelligence has been rapidly increasing with the Fourth Industrial Revolution, and researches related to AI have been actively conducted in a variety of fields such as autonomous vehicles, natural language processing, and robotics. These researches have been focused on solving cognitive problems such as learning and problem solving related to human intelligence from the 1950s. The field of artificial intelligence has achieved more technological advance than ever, due to recent interest in technology and research on various algorithms. The knowledge-based system is a sub-domain of artificial intelligence, and it aims to enable artificial intelligence agents to make decisions by using machine-readable and processible knowledge constructed from complex and informal human knowledge and rules in various fields. A knowledge base is used to optimize information collection, organization, and retrieval, and recently it is used with statistical artificial intelligence such as machine learning. Recently, the purpose of the knowledge base is to express, publish, and share knowledge on the web by describing and connecting web resources such as pages and data. These knowledge bases are used for intelligent processing in various fields of artificial intelligence such as question answering system of the smart speaker. However, building a useful knowledge base is a time-consuming task and still requires a lot of effort of the experts. In recent years, many kinds of research and technologies of knowledge based artificial intelligence use DBpedia that is one of the biggest knowledge base aiming to extract structured content from the various information of Wikipedia. DBpedia contains various information extracted from Wikipedia such as a title, categories, and links, but the most useful knowledge is from infobox of Wikipedia that presents a summary of some unifying aspect created by users. These knowledge are created by the mapping rule between infobox structures and DBpedia ontology schema defined in DBpedia Extraction Framework. In this way, DBpedia can expect high reliability in terms of accuracy of knowledge by using the method of generating knowledge from semi-structured infobox data created by users. However, since only about 50% of all wiki pages contain infobox in Korean Wikipedia, DBpedia has limitations in term of knowledge scalability. This paper proposes a method to extract knowledge from text documents according to the ontology schema using machine learning. In order to demonstrate the appropriateness of this method, we explain a knowledge extraction model according to the DBpedia ontology schema by learning Wikipedia infoboxes. Our knowledge extraction model consists of three steps, document classification as ontology classes, proper sentence classification to extract triples, and value selection and transformation into RDF triple structure. The structure of Wikipedia infobox are defined as infobox templates that provide standardized information across related articles, and DBpedia ontology schema can be mapped these infobox templates. Based on these mapping relations, we classify the input document according to infobox categories which means ontology classes. After determining the classification of the input document, we classify the appropriate sentence according to attributes belonging to the classification. Finally, we extract knowledge from sentences that are classified as appropriate, and we convert knowledge into a form of triples. In order to train models, we generated training data set from Wikipedia dump using a method to add BIO tags to sentences, so we trained about 200 classes and about 2,500 relations for extracting knowledge. Furthermore, we evaluated comparative experiments of CRF and Bi-LSTM-CRF for the knowledge extraction process. Through this proposed process, it is possible to utilize structured knowledge by extracting knowledge according to the ontology schema from text documents. In addition, this methodology can significantly reduce the effort of the experts to construct instances according to the ontology schema.

Content based data search using semantic annotation (시맨틱 주석을 이용한 내용 기반 데이터 검색)

  • Kim, Byung-Gon;Oh, Sung-Kyun
    • Journal of Digital Contents Society
    • /
    • v.12 no.4
    • /
    • pp.429-436
    • /
    • 2011
  • Various documents, images, videos and other materials on the web has been increasing rapidly. Efficient search of those things has become an important topic. From keyword-based search, internet search has been transformed to semantic search which finds the implications and the relations between data elements. Many annotation processing systems manipulating the metadata for semantic search have been proposed. However, annotation data generated by different methods and forms are difficult to process integrated search between those systems. In this study, in order to resolve this problem, we categorized levels of many annotation documents, and we proposed the method to measure the similarity between the annotation documents. Similarity measure between annotation documents can be used for searching similar or related documents, images, and videos regardless of the forms of the source data.

Scalable RDFS Reasoning using Logic Programming Approach in a Single Machine (단일머신 환경에서의 논리적 프로그래밍 방식 기반 대용량 RDFS 추론 기법)

  • Jagvaral, Batselem;Kim, Jemin;Lee, Wan-Gon;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.762-773
    • /
    • 2014
  • As the web of data is increasingly producing large RDFS datasets, it becomes essential in building scalable reasoning engines over large triples. There have been many researches used expensive distributed framework, such as Hadoop, to reason over large RDFS triples. However, in many cases we are required to handle millions of triples. In such cases, it is not necessary to deploy expensive distributed systems because logic program based reasoners in a single machine can produce similar reasoning performances with that of distributed reasoner using Hadoop. In this paper, we propose a scalable RDFS reasoner using logical programming methods in a single machine and compare our empirical results with that of distributed systems. We show that our logic programming based reasoner using a single machine performs as similar as expensive distributed reasoner does up to 200 million RDFS triples. In addition, we designed a meta data structure by decomposing the ontology triples into separate sectors. Instead of loading all the triples into a single model, we selected an appropriate subset of the triples for each ontology reasoning rule. Unification makes it easy to handle conjunctive queries for RDFS schema reasoning, therefore, we have designed and implemented RDFS axioms using logic programming unifications and efficient conjunctive query handling mechanisms. The throughputs of our approach reached to 166K Triples/sec over LUBM1500 with 200 million triples. It is comparable to that of WebPIE, distributed reasoner using Hadoop and Map Reduce, which performs 185K Triples/sec. We show that it is unnecessary to use the distributed system up to 200 million triples and the performance of logic programming based reasoner in a single machine becomes comparable with that of expensive distributed reasoner which employs Hadoop framework.

A Dynamic Management Method for FOAF Using RSS and OLAP cube (RSS와 OLAP 큐브를 이용한 FOAF의 동적 관리 기법)

  • Sohn, Jong-Soo;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.39-60
    • /
    • 2011
  • Since the introduction of web 2.0 technology, social network service has been recognized as the foundation of an important future information technology. The advent of web 2.0 has led to the change of content creators. In the existing web, content creators are service providers, whereas they have changed into service users in the recent web. Users share experiences with other users improving contents quality, thereby it has increased the importance of social network. As a result, diverse forms of social network service have been emerged from relations and experiences of users. Social network is a network to construct and express social relations among people who share interests and activities. Today's social network service has not merely confined itself to showing user interactions, but it has also developed into a level in which content generation and evaluation are interacting with each other. As the volume of contents generated from social network service and the number of connections between users have drastically increased, the social network extraction method becomes more complicated. Consequently the following problems for the social network extraction arise. First problem lies in insufficiency of representational power of object in the social network. Second problem is incapability of expressional power in the diverse connections among users. Third problem is the difficulty of creating dynamic change in the social network due to change in user interests. And lastly, lack of method capable of integrating and processing data efficiently in the heterogeneous distributed computing environment. The first and last problems can be solved by using FOAF, a tool for describing ontology-based user profiles for construction of social network. However, solving second and third problems require a novel technology to reflect dynamic change of user interests and relations. In this paper, we propose a novel method to overcome the above problems of existing social network extraction method by applying FOAF (a tool for describing user profiles) and RSS (a literary web work publishing mechanism) to OLAP system in order to dynamically innovate and manage FOAF. We employed data interoperability which is an important characteristic of FOAF in this paper. Next we used RSS to reflect such changes as time flow and user interests. RSS, a tool for literary web work, provides standard vocabulary for distribution at web sites and contents in the form of RDF/XML. In this paper, we collect personal information and relations of users by utilizing FOAF. We also collect user contents by utilizing RSS. Finally, collected data is inserted into the database by star schema. The system we proposed in this paper generates OLAP cube using data in the database. 'Dynamic FOAF Management Algorithm' processes generated OLAP cube. Dynamic FOAF Management Algorithm consists of two functions: one is find_id_interest() and the other is find_relation (). Find_id_interest() is used to extract user interests during the input period, and find-relation() extracts users matching user interests. Finally, the proposed system reconstructs FOAF by reflecting extracted relationships and interests of users. For the justification of the suggested idea, we showed the implemented result together with its analysis. We used C# language and MS-SQL database, and input FOAF and RSS as data collected from livejournal.com. The implemented result shows that foaf : interest of users has reached an average of 19 percent increase for four weeks. In proportion to the increased foaf : interest change, the number of foaf : knows of users has grown an average of 9 percent for four weeks. As we use FOAF and RSS as basic data which have a wide support in web 2.0 and social network service, we have a definite advantage in utilizing user data distributed in the diverse web sites and services regardless of language and types of computer. By using suggested method in this paper, we can provide better services coping with the rapid change of user interests with the automatic application of FOAF.