• 제목/요약/키워드: RDF Knowledge Base

검색결과 17건 처리시간 0.02초

지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구 (Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base)

  • 김재헌;이명진
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.43-61
    • /
    • 2019
  • 최근 4차 산업혁명과 함께 인공지능 기술에 대한 연구가 활발히 진행되고 있으며, 이전의 그 어느 때보다도 기술의 발전이 빠르게 진행되고 있는 추세이다. 이러한 인공지능 환경에서 양질의 지식베이스는 인공지능 기술의 향상 및 사용자 경험을 높이기 위한 기반 기술로써 중요한 역할을 하고 있다. 특히 최근에는 인공지능 스피커를 통한 질의응답과 같은 서비스의 기반 지식으로 활용되고 있다. 하지만 지식베이스를 구축하는 것은 사람의 많은 노력을 요하며, 이로 인해 지식을 구축하는데 많은 시간과 비용이 소모된다. 이러한 문제를 해결하기 위해 본 연구에서는 기계학습을 이용하여 지식베이스의 구조에 따라 학습을 수행하고, 이를 통해 자연어 문서로부터 지식을 추출하여 지식화하는 방법에 대해 제안하고자 한다. 이러한 방법의 적절성을 보이기 위해 DBpedia 온톨로지의 구조를 기반으로 학습을 수행하여 지식을 구축할 것이다. 즉, DBpedia의 온톨로지 구조에 따라 위키피디아 문서에 기술되어 있는 인포박스를 이용하여 학습을 수행하고 이를 바탕으로 자연어 텍스트로부터 지식을 추출하여 온톨로지화하기 위한 방법론을 제안하고자 한다. 학습을 바탕으로 지식을 추출하기 위한 과정은 문서 분류, 적합 문장 분류, 그리고 지식 추출 및 지식베이스 변환의 과정으로 이루어진다. 이와 같은 방법론에 따라 실제 지식 추출을 위한 플랫폼을 구축하였으며, 실험을 통해 본 연구에서 제안하고자 하는 방법론이 지식을 확장하는데 있어 유용하게 활용될 수 있음을 증명하였다. 이러한 방법을 통해 구축된 지식은 향후 지식베이스를 기반으로 한 인공지능을 위해 활용될 수 있을 것으로 판단된다.

Seq2SPARQL: 신경망 기계 번역을 사용한 지식 베이스 질의 언어 자동 생성 (Seq2SPARQL: Automatic Generation of Knowledge base Query Language using Neural Machine Translation)

  • 홍동균;심홍매;김광민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.898-900
    • /
    • 2019
  • SPARQL(SPARQL Protocol and RDF Query Language)은 지식 베이스를 위한 표준 시맨틱 질의 언어이다. 최근 인공지능 분야에서 지식 베이스는 질의 응답 시스템, 시맨틱 검색 등 그 활용성이 커지고 있다. 그러나 SPARQL 과 같은 질의 언어를 사용하기 위해서는 질의 언어의 문법을 이해하기 때문에, 일반 사용자의 경우에는 그 활용성이 제한될 수밖에 없다. 이에 본 논문은 신경망 기반 기계 번역 기술을 활용하여 자연어 질의로부터 SPARQL 을 생성하는 방법을 제안한다. 우리는 제안하는 방법을 대규모 공개 지식 베이스인 Wikidata 를 사용해 검증하였다. 우리는 실험에서 사용할 Wikidata 에 존재하는 영화 지식을 묻는 자연어 질의-SPARQL 질의 쌍 20,000 건을 생성하였고, 여러 sequence-to-sequence 모델을 비교한 실험에서 합성곱 신경망 기반의 모델이 BLEU 96.8%의 가장 좋은 결과를 얻음을 보였다.

온톨로지를 이용한 웹문서의 시맨틱 검색 (Semantic search of web documents using ontology)

  • 오성균;김병곤
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권5호
    • /
    • pp.603-612
    • /
    • 2014
  • 사용자들에게 좀 더 정확하고 편리한 검색결과를 제공하기 위하여 정보의 구조적인 특징 등을 사용하는 시맨틱 검색의 개념이 널리 연구되고 있다. 이를 위하여, 최근의 정보검색분야와 데이터구축 분야의 연구에서는 데이터의 구조적인 표현과 검색 메카니즘을 구현하기 위하여 온톨로지를 강조하고 있다. 본 연구에서는 웹 환경에서의 검색 정확도와 만족도를 향상시키기 위하여 온톨로지를 이용한 시맨틱 검색 방법을 제안한다. 온톨로지와 KB(KnowledgeBase)를 이용하여 검색 대상을 키워드간의 관계를 유추한 사실(fact)과 관계키워드들을 지니는 웹문서들로 크게 나누고 이들을 서로 유기적으로 검색을 진행하는 시맨틱 검색 질의 처리기법을 제안하였다. 또한 결과에 대한 사용자의 검색 만족도를 높이기 위하여 결과 문서와 사실에 대한 랭킹 방법을 제안하였다. 실험을 통하여 주어진 식의 값을 달리하여 랭킹을 올바로 구현하는 요소로 키워드의 빈도와 온톨로지상의 클래스 레벨이 영향을 미치는 것을 확인 할 수 있었고, 이를 통하여 적합한 형태의 계수 값을 제시하였다.

동적 분산병렬 하둡시스템 및 분산추론기에 응용한 서버가상화 빅데이터 플랫폼 (An elastic distributed parallel Hadoop system for bigdata platform and distributed inference engines)

  • 송동호;신지애;인연진;이완곤;이강세
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권5호
    • /
    • pp.1129-1139
    • /
    • 2015
  • 시멘틱 웹 기술인 RDF 트리플로 표현된 지식을 추론 과정을 거치면 새로운 트리플들이 생성되어 나온다. 초기 입력된 수억개의 트리플로 구성된 빅데이터와 추가로 생성된 트리플 데이터를 바탕으로 질의응답과 같은 다양한 응용시스템이 만들어 진다. 이 추론기가 수행되는 과정에서 더 많은 컴퓨팅 리소스가 필요해 진다. 이 추가 컴퓨팅 리소스는 하부 클라우드 컴퓨팅의 리소스 풀로부터 공급받아 수행시간을 줄일 수 있다. 본 연구에서는 하둡을 이용하는 환경에서 지식의 크기에 따라 런타임에 동적으로 서버 컴퓨팅 노드를 증감 시키는 방법을 연구하였다. 상부는 응용계층이며, 중간부는 트리플들에 대한 분산병렬추론과 하부는 탄력적 하둡시스템 및 가상화 서버로 구성되는 계층적 모델을 제시한다. 이 시스템의 알고리즘과 시험성능의 결과를 분석한다. 하둡 상에 기 개발된 풍부한 응용소프트웨어들은 이 탄력적 하둡 시스템 상에서 수정 없이 보다 빨리 수행될 수 있는 장점이 있다.

새로운 N-ary 관계 디자인 기반의 온톨로지 모델을 이용한 문장의미결정 (A Semantic Similarity Decision Using Ontology Model Base On New N-ary Relation Design)

  • 김수경;안기홍;최호진
    • 정보관리학회지
    • /
    • 제25권4호
    • /
    • pp.43-66
    • /
    • 2008
  • 시맨틱 웹 기술의 제안과 더불어 다양한 분야에 온톨로지의 특징을 적용한 기술 개발 연구가 많이 진행되고 있다. 인간이 소유한 개념을 가장 적절하게 표현하기 위해 현재에도 OWL, RDF와 같은 온톨로지 언어의 표현력을 확장시키기 위해 N-ary 관계나 모델-이론 의미론과 같은 개발이 진행되고있다. 본 연구는 한국어에 있어 문장이 내포하는 의미를 정확하게 결정하기 위해 문장의 구조에 따라 달라지는 단어의 의미를 연관할 수 있도록 N-ary 관계와 디자인 기반이 적용된 온톨로지의 지식 표현 방법을 연구하였다. 특히 다양한 지식 영역을 포함하는 다의어(polysemy)와 동의어(synonym)의 특징을 갖는 단어에 있어 각 지식 영역으로 분류되어 각 지식 영역에 있는 유사한 의미를 가진 단어로 확장되어 유사한 의미를 가진 단어가 포함된 문장의 경우 까지도 확장할 수 있는 표현 방법을 연구하였다. 연구의 검증을 위해 사용자가 입력한 병증 문장을 제안된 방법에 따라 구축된 온톨로지내 지식 관계와 의미 결정을 위한 추론 표현 방법을 이용하여 병증의 의미를 결정하고 그에 따른 진단을 제공하는 실험 시스템을 구현하였고, 한국어가 갖고 있는 문장의 유의성, 모호성, 복합성 의 특징을 보유한 증상문들의 실험 결과 의미 결정과 유사 의미 확장에 있어 우수한 성능을 보여주었다.

OntCIA: 시맨틱 웹 기술 기반의 소프트웨어 변경 영향분석 시스템 (OntCIA: Software Change Impact Analysis System Based on the Semantic Web)

  • 송희석
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.111-131
    • /
    • 2004
  • 소프트웨어 유지보수 단계에서는 고객니즈, 마케팅 정책, 법, 제도의 변화 등으로 인한 다양한 시스템 변경 요구를 수용하여야 한다. 그러나, 소프트웨어의 비가시성문제로 인해 새로운 변경 요구사항 발생 시 수정 대상 모듈을 발견하는데 지대한 시간이 요구될 뿐 아니라 모듈의 재 사용을 어렵게 만들어 중복 모듈이 양산 됨으로써 향후 장애의 근원이 되는 악순환이 전개된다. 이에 본 연구에서는 시맨틱 웹(Semantic Web) 기술을 활용하여 이동통신사의 과금/청구 도메인의 관리자와 개발자들이 공유하고 있는 개념과 개념간 관계를 명시적으로 표현하고 이를 이용하여 변경대상 모듈을 쉽게 발견 할 뿐 아니라, 발견된 모듈에 대해 구조적 호출 및 조립 관계를 분석하도록 지원하는 온톨로지 기반 변경 영향 분석 시스템(OntCIA; Ontology based Change Impact Analysis System)을 제시한다. OntCIA는 스트링 매칭과는 근본적으로 다른 의미적 모듈검색을 지원하며 잦은 변경이 요구되는 호출 및 조립 구조 정보는 데이터 베이스에서 관리하고 도메인 지식은 온톨로지로 관리함으로써 유지 보수가 용이한 구조를 가진다.

  • PDF

차세대 웹 환경에서의 Rete Algorithm을 이용한 정방향 추론엔진 SMART - F 개발 (Development of Forward chaining inference engine SMART-F using Rete Algorithm in the Semantic Web)

  • 정균범;홍준석;김우주;이명진;박지형;송용욱
    • 지능정보연구
    • /
    • 제13권3호
    • /
    • pp.17-29
    • /
    • 2007
  • 웹 표준 언어인 XML에 기반한 각종 표준들을 바탕으로 소프트웨어 에이전트와의 인터페이스에 초점을 맞추고 있는 차세대 웹에서 소프트웨어 에이전트의 두뇌 역할을 수행하기 위한 추론엔진은 시맨틱 웹(Semantic Web)에서의 규칙 표현을 위한 언어인 SWRL(Semantic Web Rule Language)을 이해할 수 있어야 한다. 본 연구에서는 SWRL을 규칙 표현 방법으로 사용하고, OWL을 사실 표현 방법으로 사용하는 정방향 추론엔진인 SMART-F(SeMantic web Agent Reasoning Tools-Forward chaining inference engine)을 개발하고자 한다. 전통적인 규칙 추론 분야에서는 정방향 추론을 위하여 if-then 형태의 규칙을 네트워크 구조로 변환하여 정방향 규칙 추론의 효율성을 높인 Rete 알고리즘이 많이 사용되고 있다. 이를 시맨틱 웹 환경에 적용하기 위하여 SWRL 기반 정방향 추론을 위한 요구 기능을 분석하고, Rete 알고리즘에 도출된 차세대 시맨틱 웹의 요구 기능을 반영한 정방향 추론 알고리즘을 설계하였다. 또한, 유비쿼터스 환경에서의 각종 플랫폼의 독립성과 이식성을 확보하고 기기간의 성능 차이를 극복할 수 있도록 사실 베이스 및 규칙 베이스의 관리도구와 정방향 추론 엔진 등을 Java 컴포넌트로 개발하였으며, 이는 이미 개발된 역방향 추론엔진인 SMART-B와 규칙 베이스 및 사실 베이스를 완벽하게 호환 가능하므로 차세대 웹 환경에서의 지식 활용을 극대화시킬 것이다.

  • PDF