• Title/Summary/Keyword: RCS leakage

Search Result 9, Processing Time 0.022 seconds

Evaluation of Shear Bond Strength and Microleakage of Bulk-fill Resin Composites (Bulk-fill 복합레진의 상아질 전단결합강도 및 미세누출)

  • Lee, Hanbyeol;Seo, Hyunwoo;Lee, Juhyun;Park, Howon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.4
    • /
    • pp.281-290
    • /
    • 2015
  • The aim of this study was to evaluate shear bond strength (SBS) of bulk-fill resin composites (RCs) to dentin and their micro-leakage. One high-viscosity bulk-fill RC and 2 low-viscosity bulk-fill RCs were compared with 1 conventional RC. 7thgenerationbondingagentswereused. In order to evaluate SBS values, 40 permanent molars were selected and divided into 4 groups. The bulk-fill RCs were applied in 4 mm thickness, whereas the conventional RC was applied in 2 mm thickness. In order to evaluate micro-leakage, class I cavities ($5{\times}2{\times}4mm$) were prepared in 32 permanent molars. The teeth were divided into 4 groups and restored with resin composites in an increment of 4 mm for the bulk-fill RC and in 2 horizontal increments of 2 mm for the conventional RC. The mean SBS value of conventional RC showed no statistically significant difference when compared with those of low-viscosity bulk-fill RCs. However, the mean SBS value of high-viscosity bulk-fill RC was significantly lower than that of conventional RC (p < 0.05). There were no statistically significant differences in micro-leakage between the 4 groups. For SBS and micro-leakage, the use of low-viscosity bulk-fill RCs might help clinicians simplify the procedure.

Feasibility study of β-ray detection system for small leakage from reactor coolant system

  • Jang, Jaeyeong;Jeong, Jae Young;Park, Junesic;Cho, Young-Sik;Pak, Kihong;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2748-2754
    • /
    • 2022
  • Because existing reactant coolant system (RCS) leakage detection mechanisms are insensitive to small leaks, a real-time, direct detection system with a detection threshold below 0.5 gpm·hr-1 was studied. A beta-ray detection system using a silicon detector with good energy resolution for beta rays and a low gamma-ray response was proposed. The detection performance in the leakage condition was evaluated through experiments and simulations. The concentration of 16N in the coolant corresponding to a coolant leakage of 0.5 gpm was calculated using the analytic method and ORIGEN-ARP. Based on the concentration of 16N and the measurement of the silicon detector with 90Sr/90Y, the beta-ray count rate was estimated using MCNPX. To evaluate the effect of gamma rays inside the containment building, the signal-to-noise ratio (SNR) was calculated. To evaluate the count rate ratio, the radiation field inside the containment building was simulated using MCNPX, and response evaluation experiments were performed using beta and gamma rays on the silicon detector. The expected beta-ray count rate at 0.5 gpm leakage was 7.26 × 105 counts/sec, and the signal-to-background count rate ratio exceeded 88 for a transport time of 10 s, demonstrating its suitability for operation inside a reactor containment building.

Experimental Research for Identification of Thermal Stratification Phenomena in The Nuclear Powerplant Emergency Core Coolant System(ECCS). (원전 비상 노심냉각계통 배관 열성층화 현상 규명을 위한 실험적 연구)

  • Song, Dho-In;Choi, Young-Don;Park, Min-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.735-740
    • /
    • 2001
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, it occurs thermal stratification phenomena in case that there is the mixing of cooling water and high temperature water due to valve leakage in ECCS. This thermal stratification phenomena raises excessive thermal stresses at pipe wall. Therefore, this phenomena causes the accident that reactor coolant flows in reactor containment in the nuclear power plant due to the deformation of pipe and thermal fatigue crack(TFC) at the pipe wall around the place that it exists. Hence, in order to fundamental identification of this phenomena, it requires the experimental research of modeling test in the pipe flow that occurs thermal stratification phenomena. So, this paper models RCS and ECCS pipe arrangement and analyzes the mechanism of thermal stratification phenomena by measuring of temperature in variance with leakage flow rate in ECCS modeled pipe and Reynold number in RCS modeled pipe. Besides, results of this experiment is compared with computational analysis which is done in advance.

  • PDF

Feasibility Study of Beta Detector for Small Leak Detection inside the Reactor Containment

  • Jang, JaeYeong;Schaarschmidt, Thomas;Kim, Yong Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.154-159
    • /
    • 2018
  • Background: To prevent small leakage accidents, a real-time and direct detection system for small leaks with a detection limit below that of existing systems, e.g. $0.5gpm{\cdot}hr^{-1}$, is required. In this study, a small-size beta detector, which can be installed inside the reactor containment (CT) building and detect small leaks directly, was suggested and its feasibility was evaluated using MCNPX simulation. Materials and Methods: A target nuclide was selected through analysis of radiation from radionuclides in the reactor coolant system (RCS) and the spectrum was obtained via a silicon detector simulated in MCNPX. A window was designed to reduce the background signal caused by other nuclides. The sensitivity of the detector was also estimated, and its shielding designed for installation inside the reactor CT. Results and Discussion: The beta and gamma spectrum of the silicon detector showed a negligible gamma signal but it also contained an undesired peak at 0.22 MeV due to other nuclides, not the $^{16}N$ target nuclide. Window to remove the peak was derived as 0.4 mm for beryllium. The sensitivity of silicon beta detector with a beryllium window of 1.7 mm thickness was derived as $5.172{\times}10^{-6}{\mu}Ci{\cdot}cc^{-1}$. In addition, the specification of the shielding was evaluated through simulations, and the results showed that the integrity of the silicon detector can be maintained with lead shielding of 3 cm (<15 kg). This is a very small amount compared to the specifications of the lead shielding (600 kg) required for installation of $^{16}N$ gamma detector in inside reactor CT, it was determined that beta detector would have a distinct advantage in terms of miniaturization. Conclusion: The feasibility of the beta detector was evaluated for installation inside the reactor CT to detect small leaks below $0.5gpm{\cdot}hr^{-1}$. In future, the design will be optimized on specific data.

A COUPLED CFD-FEM ANALYSIS ON THE SAFETY INJECTION PIPING SUBJECTED TO THERMAL STRATIFICATION

  • Kim, Sun-Hye;Choi, Jae-Boong;Park, Jung-Soon;Choi, Young-Hwan;Lee, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.237-248
    • /
    • 2013
  • Thermal stratification has continuously caused several piping failures in nuclear power plants since the early 1980s. However, this critical thermal effect was not considered when the old nuclear power plants were designed. Therefore, it is urgent to evaluate this unexpected thermal effect on the structural integrity of piping systems. In this paper, the thermal effects of stratified flow in two different safety injection piping systems were investigated by using a coupled CFD-FE method. Since stratified flow is generally generated by turbulent penetration and/or valve leakage, thermal stress analyses as well as CFD analyses were carried out considering these two primary causes. Numerical results show that the most critical factor governing thermal stratification is valve leakage and that temperature distribution significantly changes according to the leakage path. In particular, in-leakage has a high possibility of causing considerable structural problems in RCS piping.

Thermal Cycling Screening Criteria to RCS Branch Lines in Domestic Nuclear Power Plant (국내 원전 RCS 분기배관에 대한 열피로 선정기준)

  • Park, Jeong Soon;Choi, Young Hwan;Lim, Kuk Hee;Kim, Sun Hye
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.54-60
    • /
    • 2010
  • Piping failures due to thermal fatigue have been widely reported in normally stagnant non-isolable reactor coolant branch lines. Since the thermal fatigue due to thermal stratification was not considered in the piping fatigue design in old NPPs, it is important to evaluate the effect of thermal stratification on the integrity of branch lines. In this study, geometrical screening criteria for Up-horizontal branch lines in MRP-132 were applied to SI(Safety Injection) lines of KSNP 2-loop and WH 3-loop. Some computational fluid dynamic(CFD) analyses on the Reactor Coolant System(RCS) branch lines were also performed to develop the regulatory guidelines for screening criteria. As a result of applying MRP-132 screening criteria, KSNP 2-loop and WH 3-loop SI lines are determined to need further detailed evaluation. Results of CFD analyses show that both valve isolation and amount of leakage through valve can be used as technical bases for the screening criteria on the thermal fatigue analysis.

  • PDF

MIDLOOP Code Analysis of a ROSA-IV/LSTF Experiment for the Loss of Residual Heat Removal System Event During Mid- loop Operation

  • Han, Kee-Soo;Lee, Cheol-Sin;Park, Chul-Jin;Kim, Hee-Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.683-690
    • /
    • 1996
  • The MIDLOOP code has been developed for the evaluation of RES pressurization transients initiated from a loss-of-Residual Heat Removal System (RHRS) during mid-loop operation after reactor shutdown. It provides a fast running and realistic tool for studying parametrically the response of important plant parameters such as pressure, temperature, and level to various plant combinations of the primary side vent, makeup, and leakage procedures and the steam generator (SG) conditions. The code consists of ten nodes representing the primary and secondary sides of a nuclear power plant and can analyze the effect of air on the primary system pressurization and primary to secondary heat transfer. The analysis results of the MIDLOOP code are in good agreement with the ROSA-IV/LSTF experiment without opening in the RCS.

  • PDF

Effects of superimposed cyclic operation on corrosion products activity in reactor cooling system of AP-1000

  • Mahmood, Fiaz;Hu, Huasi;Lu, Guichi;Ni, Si;Yuan, Jiaqi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1109-1116
    • /
    • 2019
  • It is essential to predict the radioactivity distribution around the reactor cooling system (RCS) during obligatory cyclic operation of AP-1000. A home-developed program CPA-AP1000 is upgraded to predict the response of activated corrosion products (ACPs) in the RCS. The program is written in MATLAB and it uses state of the art MCNP as a subroutine for flux calculations. A pair of cyclic power profiles were superimposed after initial full power operation. The effect of cyclic operation is noticed to be more prominent for in-core surfaces, followed by the primary coolant and out-of-core structures. The results have shown that specific activity trends of $^{56}Mn$ and $^{24}Na$ promptly follow the power variations, whereas, $^{59}Fe$, $^{58}Co$, $^{99}Mo$ and $^{60}Co$ exhibit a sluggish power-following response. The investigations pointed out that promptly power-following response of ACPs in the coolant is vital as an instant radioactivity source during leakage incidents. However, the ACPs with delayed power-following response in the out-of-core components are perceived to cause a long-term activity. The present results are found in good agreement with those for a reference PWR. The results are useful for source term monitoring and optimization of work procedures for an innovative reactor design.

Thruster Fault Detection of the Launch Vehicle Upper Stage Attitude Control System (발사체 상단 자세제어 시스템의 추력기 고장 검출)

  • Lee, Soo-Jin;Kwon, Hyuk-Hoon;Hwang, Tae-Won;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.72-79
    • /
    • 2004
  • A method for thruster fault diagnosis for launch vehicle upper stage was developed. In order to protect the launch vehicle against the occurrence of faults, it is necessary to detect and identify the fault, as well as to reconfigure the controller of the vehicle. Considering the upper stage launch vehicle using reaction control system, an analytical method was adopted in order to detect the fault occurred in thruster. The fault detection scheme can be applied to the system regardless of the form of thruster fault occurred - leakage or lock-out. Results from processor-in-the-loop simulation are provided to demonstrate the validity of this fault detection and isolation scheme for the upper stage launch vehicle.