• Title/Summary/Keyword: RCP climate scenario

Search Result 252, Processing Time 0.021 seconds

Projections of Future Summer Weather in Seoul and Their Impacts on Urban Agriculture (미래 서울의 여름날씨 전망과 도시농업에의 영향)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.182-189
    • /
    • 2015
  • Climate departure from the past variability was projected to start in 2042 for Seoul. In order to understand the implication of climate departure in Seoul for urban agriculture, we evaluated the daily temperature for the June-September period from 2041 to 2070, which were projected by the RCP8.5 climate scenario. These data were analyzed with respect to climate extremes and their effects on growth of hot pepper (Capsicum annuum), one of the major crops in urban farming. The mean daily maximum and minimum temperatures in 2041-2070 approached to the $90^{th}$ percentile in the past 30 years (1951-1980). However, the frequency of extreme events such as heat waves and tropical nights appeared to exceed the past variability. While the departure of mean temperature might begin in or after 2040, the climate departure in the sense of extreme weather events seems already in progress. When the climate scenario data were applied to the growth and development of hot pepper, the departures of both planting date and harvest date are expected to follow those of temperature. However, the maximum duration for hot pepper cultivation, which is the number of days between the first planting and the last harvest, seems to have already deviated from the past variability.

A Study on Vulnerability Assessment to Climate Change in Siheung-si (시흥시 기후변화 취약성 평가 연구)

  • Yun, Seong Gwon;Choi, Bong Seok;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • This study has purpose to minimize the impact of climate change of Siheung. Vulnerability assessment was carried out for establishing the Siheung Climate Change Master Plan. Climate change vulnerability assessment analyzed using climate exposure, sensitivity and adaptive capacity indicators. A proxy variable is selected from each indicator. Meteorological data uses the RCP scenarios provided by the Meteorological Administration, and this study assumes that the same trend will continues in the future. Siheung are vulnerable to heavy rains in the flooded roads and farmland. Also, it is necessary to be careful heat wave in summer. The size and scale of the damage depends on the city's ability to respond to the impacts of climate change. It is necessary to make a adaptation plan for climate change impact assessment and vulnerability analysis. This study will be used to make Siheung Climate Change Master Plan and to determine the priority of the policy as guideline. It is expected that this study is helpful to pursue climate change vulnerability assessment of other local governments.

Analysis of Drought Hotspot Areas Using Local Indicators of Spatial Association in the Nakdong River Basin (공간연관성 지표를 이용한 낙동강 유역의 가뭄 핫스팟 지역 분석)

  • Son, Ho-Jun;Byun, Sung Ho;Park, Kyung Woon;Kim, Ji Eun;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.175-185
    • /
    • 2023
  • As drought risk increases due to climate change, various research works are underway around the world to respond to drought so as to minimize drought damage. In particular, in recent years, many studies are focused on analyzing regional patterns of drought in a comprehensive manner, however there is still insufficient to quantitatively identify drought-risk areas in a large river basin considering climate change in Korea. In this study, we calculated the Standardized Precipitation Index (SPI) and the Modified Standardized Precipitation Index (M_SPI) as representative meteorological drought index, and performed spatial autocorrelation analysis to identify the drought hotspot region under climate change scenarios of Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. The SPI was calculated by estimating parameters for each observation station within the study area, whereas the M_SPI was calculated by estimating parameters for the entire study area. It is more reasonable to use the M_SPI for assessing meteorological drought from an overall perspective within the study area. When the M_SPI was used, long-term droughts showed drought hotspot areas clearly larger than short-term droughts. In addition, the drought hotspot area moved from the center of the Nakdong River basin to the Seomjin River basin over time. Especially, the moving patterns of the short-term/long-term drought were apparent under the RCP 4.5, whereas the moving patterns of the long-term drought were distinct under the RCP 8.5 scenarios.

Development of an Emissions Processing System for Climate Scenario Inventories to Support Global and Asian Air Quality Modeling Studies

  • Choi, Ki-Chul;Lee, Jae-Bum;Woo, Jung-Hun;Hong, Sung-Chul;Park, Rokjin J.;Kim, Minjoong J.;Song, Chang-Keun;Chang, Lim-Seok
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.330-343
    • /
    • 2017
  • Climate change is an important issue, with many researches examining not only future climatic conditions, but also the interaction of climate and air quality. In this study, a new version of the emissions processing software tool - Python-based PRocessing Operator for Climate and Emission Scenarios (PROCES) - was developed to support climate and atmospheric chemistry modeling studies. PROCES was designed to cover global and regional scale modeling domains, which correspond to GEOS-Chem and CMAQ/CAMx models, respectively. This tool comprises of one main system and two units of external software. One of the external software units for this processing system was developed using the GIS commercial program, which was used to create spatial allocation profiles as an auxiliary database. The SMOKE-Asia emissions modeling system was linked to the main system as an external software, to create model-ready emissions for regional scale air quality modeling. The main system was coded in Python version 2.7, which includes several functions allowing general emissions processing steps, such as emissions interpolation, spatial allocation and chemical speciation, to create model-ready emissions and auxiliary inputs of SMOKE-Asia, as well as user-friendly functions related to emissions analysis, such as verification and visualization. Due to its flexible software architecture, PROCES can be applied to any pregridded emission data, as well as regional inventories. The application results of our new tool for global and regional (East Asia) scale modeling domain under RCP scenario for the years 1995-2006, 2015-2025, and 2040-2055 was quantitatively in good agreement with the reference data of RCPs.

Distribution Prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the Climate Change (기후변화에 따른 한국꼬리치레도롱뇽(Onychodactylus koreanus)의 분포 예측에 대한 연구)

  • Lee, Su-Yeon;Choi, Seo-yun;Bae, Yang-Seop;Suh, Jae-Hwa;Jang, Hoan-Jin;Do, Min-Seock
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.480-489
    • /
    • 2021
  • Climate change poses great threats to wildlife populations by decreasing their number and destroying their habitats, jeopardizing biodiversity conservation. Asiatic salamander (Hynobiidae) species are particularly vulnerable to climate change due to their small home range and limited dispersal ability. Thus, this study used one salamander species, the Korean clawed salamander (Onychodactylus koreanus), as a model species and examined their habitat characteristics and current distribution in South Korea to predict its spatial distribution under climate change. As a result, we found that altitude was the most important environmental factor for their spatial distribution and that they showed a dense distribution in high-altitude forest regions such as Gangwon and Gyeongsanbuk provinces. The spatial distribution range and habitat characteristics predicted in the species distribution models were sufficiently in accordance with previous studies on the species. By modeling their distribution changes under two different climate change scenarios, we predicted that the distribution range of the Korean clawed salamander population would decrease by 62.96% under the RCP4.5 scenario and by 98.52% under the RCP8.5 scenario, indicating a sharp reduction due to climate change. The model's AUC value was the highest in the present (0.837), followed by RCP4.5 (0.832) and RCP8.5 (0.807). Our study provides a basic reference for implementing conservation plans for amphibians under climate change. Additional research using various analysis techniques reflecting habitat characteristics and minute habitat factors for the whole life cycle of Korean-tailed salamanders help identify major environmental factors that affect species reduction.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

A Study for the Computer Simulation on the Flood Prevention Function of the Extensive Green Roof in Connection with RCP 8.5 Scenarios (RCP 8.5 시나리오와 연동한 저관리형 옥상녹화시스템의 수해방재 성능에 대한 전산모의 연구)

  • Kim, Tae Han;Park, Sang Yeon;Park, Eun Hee;Jang, Seung Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • Recently, major cities in Korea are suffering from frequent urban flooding caused by heavy rainfall. Such urban flooding mainly occurs due to the limited design capacity of the current drainage network, which increases the vulnerability of the cities to cope with intense precipitation events brought about by climate change. In other words, it can be interpreted that runoff exceeding the design capacity of the drainage network and increased impervious surfaces in the urban cities can overburden the current drainage system and cause floods. The study presents the green roof as a sustainable solution for this issue, and suggests the pre-design using the LID controls model in SWMM to establish more specific flood prevention system. In order to conduct the computer simulation in connection with Korean climate, the study used the measured precipitation data from Cheonan Station of Korea Meteorological Administration (KMA) and the forecasted precipitation data from RCP 8.5 scenario. As a result, Extensive Green Roof System reduced the peak runoff by 53.5% with the past storm events and by 54.9% with the future storm events. The runoff efficiency was decreased to 4% and 7%. This results can be understood that Extensive Green Roof System works effectively in reducing the peak runoff instead of reducing the total stormwater runoff.

Projecting future hydrological and ecological droughts with the climate and land use scenarios over the Korean peninsula (기후 및 토지이용 변화 시나리오 기반 한반도 미래 수문학적 및 생태학적 가뭄 전망)

  • Lee, Jaehyeong;Kim, Yeonjoo;Chae, Yeora
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.427-436
    • /
    • 2020
  • It is uncertain how global climate change will influence future drought characteristics over the Korean peninsula. This study aims to project the future droughts using climate change and land use change scenarios over the Korean peninsula with the land surface modeling system, i.e., Weather Research and Forecasting Model Hydrological modeling system (WRF-Hydro). The Representative Concentration Pathways (RCPs) 2.6 and 8.5 are used as future climate scenarios and the Shared Socio-economic Pathways (SSPs), specifically SSP2, is adopted for the land use scenario. The using Threshold Level Method (TLM), we identify future hydrological and ecological drought events with runoff and Net Primary Productivity (NPP), respectively, and assess drought characteristics of durations and intensities in different scenarios. Results show that the duration of drought is longer over RCP2.6-SSP2 for near future (2031-2050) and RCP8.5-SSP2 (2080-2099) for the far future for hydrological drought. On the other hand, RCP2.6-SSP2 for the far future and RCP8.5-SSP2 for the near future show longer duration for ecological drought. In addition, the drought intensities in both hydrological and ecological drought show different characteristics with the drought duration. The intensity of the hydrological droughts was greatly affected by threshold level methods and RCP2.6-SSP2 for far future shows the severest intensity. However, for ecological drought, the difference of the intensity among the threshold level is not significant and RCP2.6-SSP2 for near future and RCP2.6-SSP2 for near future show the severest intensity. This study suggests a possible future drought characteristics is in the Korea peninsula using combined climate and land use changes, which will help the community to understand and manage the future drought risks.

Spatial Analysis of Typhoon Genesis Distribution based on IPCC AR5 RCP 8.5 Scenario (IPCC AR5 RCP 8.5 시나리오 기반 태풍발생 공간분석)

  • Lee, Sungsu;Kim, Ga Young
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.49-58
    • /
    • 2014
  • Natural disasters of large scale such as typhoon, heat waves and snow storm have recently been increased because of climate change according to global warming which is most likely caused by greenhouse gas in the atmosphere. Increase of greenhouse gases concentration has caused the augmentation of earth's surface temperature, which raised the frequency of incidences of extreme weather in northern hemisphere. In this paper, we present spatial analysis of future typhoon genesis based on IPCC AR5 RCP 8.5 scenario, which applied latest carbon dioxide concentration trend. For this analysis, we firstly calculated GPI using RCP 8.5 monthly data during 1982~2100. By spatially comparing the monthly averaged GPIs and typhoon genesis locations of 1982~2010, a probability density distribution(PDF) of the typhoon genesis was estimated. Then, we defined 0.05GPI, 0.1GPI and 0.15GPI based on the GPI ranges which are corresponding to probability densities of 0.05, 0.1 and 0.15, respectively. Based on the PDF-related GPIs, spatial distributions of probability on the typhoon genesis were estimated for the periods of 1982~2010, 2011~2040, 2041~2070 and 2071~2100. Also, we analyzed area density using historical genesis points and spatial distributions. As the results, Philippines' east area corresponding to region of latitude $10^{\circ}{\sim}20^{\circ}$ shows high typhoon genesis probability in future. Using this result, we expect to estimate the potential region of typhoon genesis in the future and to develop the genesis model.

Analysis of Land Use Change Using RCP-Based Dyna-CLUE Model in the Hwangguji River Watershed (RCP 시나리오 기반 Dyna-CLUE 모형을 이용한 황구지천 유역의 토지이용변화 분석)

  • Kim, Jihye;Park, Jihoon;Song, Inhong;Song, Jung-Hun;Jun, Sang Min;Kang, Moon Seong
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.2
    • /
    • pp.33-49
    • /
    • 2015
  • The objective of this study was to predict land use change based on the land use change scenarios for the Hwangguji river watershed, South Korea. The land use change scenario was derived from the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. The CLUE (conversion of land use and its effects) model was used to simulate the land use change. The CLUE is the modeling framework to simulate land use change considering empirically quantified relations between land use types and socioeconomic and biophysical driving factors through dynamical modeling. The Hwangguji river watershed, South Korea was selected as study area. Future land use changes in 2040, 2070, and 2100 were analyzed relative to baseline (2010) under the RCP4.5 and 8.5 scenarios. Binary logistic regressions were carried out to identify the relation between land uses and its driving factors. CN (Curve number) and impervious area based on the RCP4.5 and 8.5 scenarios were calculated and analyzed using the results of future land use changes. The land use change simulation of the RCP4.5 scenario resulted that the area of urban was forecast to increase by 12% and the area of forest was estimated to decrease by 16% between 2010 and 2100. The land use change simulation of the RCP8.5 scenario resulted that the area of urban was forecast to increase by 16% and the area of forest was estimated to decrease by 18% between 2010 and 2100. The values of Kappa and multiple resolution procedure were calculated as 0.61 and 74.03%. CN (III) and impervious area were increased by 0-1 and 0-8% from 2010 to 2100, respectively. The study findings may provide a useful tool for estimating the future land use change, which is an important factor for the future extreme flood.