• Title/Summary/Keyword: RCP

Search Result 783, Processing Time 0.036 seconds

Projecting future hydrological and ecological droughts with the climate and land use scenarios over the Korean peninsula (기후 및 토지이용 변화 시나리오 기반 한반도 미래 수문학적 및 생태학적 가뭄 전망)

  • Lee, Jaehyeong;Kim, Yeonjoo;Chae, Yeora
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.427-436
    • /
    • 2020
  • It is uncertain how global climate change will influence future drought characteristics over the Korean peninsula. This study aims to project the future droughts using climate change and land use change scenarios over the Korean peninsula with the land surface modeling system, i.e., Weather Research and Forecasting Model Hydrological modeling system (WRF-Hydro). The Representative Concentration Pathways (RCPs) 2.6 and 8.5 are used as future climate scenarios and the Shared Socio-economic Pathways (SSPs), specifically SSP2, is adopted for the land use scenario. The using Threshold Level Method (TLM), we identify future hydrological and ecological drought events with runoff and Net Primary Productivity (NPP), respectively, and assess drought characteristics of durations and intensities in different scenarios. Results show that the duration of drought is longer over RCP2.6-SSP2 for near future (2031-2050) and RCP8.5-SSP2 (2080-2099) for the far future for hydrological drought. On the other hand, RCP2.6-SSP2 for the far future and RCP8.5-SSP2 for the near future show longer duration for ecological drought. In addition, the drought intensities in both hydrological and ecological drought show different characteristics with the drought duration. The intensity of the hydrological droughts was greatly affected by threshold level methods and RCP2.6-SSP2 for far future shows the severest intensity. However, for ecological drought, the difference of the intensity among the threshold level is not significant and RCP2.6-SSP2 for near future and RCP2.6-SSP2 for near future show the severest intensity. This study suggests a possible future drought characteristics is in the Korea peninsula using combined climate and land use changes, which will help the community to understand and manage the future drought risks.

Analysis of the effects of the seawater intrusion countermeasures considering future sea level rise in Yeosu region using SEAWAT (SEAWAT을 이용한 미래 해수면 상승에 따른 여수지역 해수침투 저감 대책 효과 분석)

  • Yang, Jeong-Seok;Lee, Jae-Beom;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.515-521
    • /
    • 2018
  • Seawater intrusion areas were calculated in Yeosu region considering sea level rise and the effects of countermeasures for seawater intrusion were analyzed using SEAWAT program. The estimated seawater intrusion area was $14.90km^2$ in 2015. When we applied climate change scenarios the area was changed to $19.19km^2$ for RCP 4.5 and $20.43km^2$ for RCP 8.5 respectively. The mitigation effects by artificial recharge with total $50m^3/d$, $100m^3/d$, and $300m^3/d$ are from 3.75% to 10.68% for RCP 4.5, and from 5.82% to 10.77% for RCP 8.5 respectively. If we install barrier wall with the thickness 0.8 m, 1.3 m, and 1.8 m, the mitigation effects are from 6.67% to 12.04% for RCP 4.5, and from 6.17% to 14.98% for RCP 8.5 respectively. The results of this study can be used to be a logical means of quantitative grounds for policy decisions to prevent groundwater contamination by seawater intrusion and subsequent secondary damage in coastal areas.

Nn Evaluation of Climate Change Effects on Pollution Loads of the Hwangryong River Watershed in Korea (기후변화에 따른 황룡강 유역의 오염부하 유출량 변화 분석)

  • Park, Min Hye;Cho, Hong-Lae;Koo, Bhon Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.185-196
    • /
    • 2015
  • A conceptual watershed model HSPF (Hydrological Simulation Program-Fortran) was applied to the Hwangryong river watershed to evaluate climate change effects on pollution loads of the river. For modeling purposes, the Hwangryong river watershed was divided into 7 sub-watersheds. The model was calibrated and validated for the river discharges against the data observed in 2011 at several monitoring stations. The RCP scenarios were set up for the model simulations after being corrected by change factor method. The simulation results of the RCP 4.5 scenario indicate that the annual river discharge and concentrations of BOD, TN, TP of the Hwangryong river will continually increase during the second-half of the 21st century. As for the RCP 8.5 scenario, the simulations results imply that the pollution loads will increase during the middle of the 21st century reflecting the pattern of precipitation. Monthly distributions of the pollution loads for the RCP 4.5 and the RCP 8.5 scenarios show it will increase the most in September and February, respectively.

Impact of Climate Change on Yield Loss Caused by Bacterial Canker on Kiwifruit in Korea (기후변화 시나리오에 따른 미래 참다래 궤양병 피해 예측)

  • Do, Ki Seok;Chung, Bong Nam;Choi, Kyung San;Ahn, Jeong Joon;Joa, Jae Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.2
    • /
    • pp.65-73
    • /
    • 2016
  • We estimated the averaged maximum incidences of bacterial canker at suitable sites for kiwifruit cultivation in 2020s and 2050s using D-PSA-K model with RCP4.5 and RCP8.5 climate change scenarios. Though there was a little difference between the estimation using RCP4.5 and that using RCP8.5, the estimated maximum disease incidences were more than 75% at all the suitable sites in Korea except for some southern coastal areas and Jeju island under the assumption that there are a plenty of infections to cause the symptoms. We also analyzed the intermediate and final outputs of D-PSA-K model to find out the trends on the change in disease incidence affected by climate change. Whereas increase of damage to kiwifruit canes in a non-frozen environment caused by bacterial canker was estimated at almost all the suitable sites in both the climate change scenarios, rate of necrosis increase caused by the bacterial canker pathogen in a frozen environment during the last overwintering season was predicted to be reduced at almost all the suitable sites in both the climate change scenarios. Directions of change in estimated maximum incidence varied with sites and scenarios. Whereas the maximum disease incidence at 3.14% of suitable sites for kiwifruit cultivation in 2020s under RCP4.5 scenario was estimated to increase by 10% or more in 2050s, the maximum disease incidence at 25.41% of the suitable sites under RCP8.5 scenario was estimated so.

Evaluation of water quality in the Sangsa Lake under climate change by combined application of HSPF and AEM3D (HSPF 와 AEM3D를 이용한 기후변화에 따른 상사호 유역의 수질오염 부하 및 댐 내 수질 변화 특성 분석)

  • Goh, Nayeon;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.877-886
    • /
    • 2022
  • This study was carried out to analyze how the flow and water quality of the Sangsa Lake (juam control basin) change according to future climate change and what countermeasures are needed. Aquatic Ecosystem Model) was used in conjunction. As climate change scenarios, RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios of AR5 (5th Assessment Report) according to the Intergovernmental Panel on Climate Change (IPCC) were used. For the climate change scenario, detailed data on the Sangsa Lake basin were used by the Korea Meteorological Administration, and after being evaluated as a correction and verification process for the 10-year period from 2012 to 2021, the present, 2025-2036, 2045- The summer period from June to August and the winter period from December to February were analyzed separately for each year by dividing it into 2056 and 2075-2086. RCP 8.5 was higher than RCP 4.5 as an arithmetic mean for the flow rate of the watershed of the superior lake for the entire simulation period, and TN and TP also showed a tendency to be higher at RCP 4.5. However, in RCP 8.5, the outflow of pollutants decreased during the dry season and the outflow of pollutants increased during the summer, indicating that the annual pollutant outflow was concentrated during the flood season, and it is analyzed that countermeasures are needed.

P300 speller using a new stimulus presentation paradigm (새로운 자극제시방법을 사용한 P300 문자입력기)

  • Eom, Jin-Sup;Yang, Hye-Ryeon;Park, Mi-Sook;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2013
  • In the implementation of a P300 speller, rows and columns paradigm (RCP) is most commonly used. However, the RCP remains subject to adjacency-distraction error and double-flash problems. This study suggests a novel P300 speller stimuli presentation-the sub-block paradigm (SBP) that is likely to solve the problems effectively. Fifteen subjects participated in this experiment where both SBP and RCP were used to implement the P300 speller. Electroencephalography (EEG) activity was recorded from Fz, Cz, Pz, Oz, P3, P4, PO7, and PO8. Each paradigm consisted of a training phase to train a classifier and a testing phase to evaluate the speller. Eighteen characters were used for the target stimuli in the training phase. Additionally, 5 subjects were required to spell 50 characters and the rest of the subjects were to spell 25 characters in the testing phase. Classification accuracy results show that average accuracy was significantly higher in SBP as of 83.73% than that of RCP as of 66.40%. Grand mean event-related potentials (ERPs) at Pz show that positive peak amplitude for the target stimuli was greater in SBP compared to that of RCP. It was found that subjects tended to attend more to the characters in SBP. According to the participants' ratings on how comfortable they were with using each type of paradigm on 7-point Likert scale, most subjects responded 'very difficult' in RCP while responding 'medium' and 'easy' in SBP. The result showed that SBP was felt more comfortable than RCP by the subjects. In sum, the SBP was more correct in P300 speller performance as well as more convenient for users than the RCP. The actual limitations in the study were discussed in the last part of this paper.

  • PDF

Urban Growth Prediction each Administrative District Considering Social Economic Development Aspect of Climate Change Scenario (기후변화시나리오의 사회경제발전 양상을 고려한 행정구역별 도시성장 예측)

  • Kim, Jin Soo;Park, So Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.53-62
    • /
    • 2013
  • Land-use/cover changes not only amplify or alleviate influence of climate changes but also they are representative factors to affect environmental change along with climate changes. Thus, the use of land-use/cover changes scenario, consistent climate change scenario is very important to evaluate reliable influences by climate change. The purpose for this study is to predict and analyze the future urban growth considering social and economic scenario from RCP scenario suggested by the 5th evaluation report of IPCC. This study sets land-use/cover changes scenario based on storyline from RCP 4.5 and 8.5 scenario. Urban growth rate for each scenario is calculated by urban area per person and GDP for the last 25 years and regression formula based on double logarithmic model. In addition, the urban demand is predicted by the future population and GDP suggested by the government. This predicted demand is spatially distributed by the urban growth probability map made by logistic regression. As a result, the accuracy of urban growth probability map is appeared to be 89.3~90.3% high and the prediction accuracy for RCP 4.5 showed higher value than that of RCP 8.5. Urban areas from 2020 to 2050 showed consistent growth while the rate of increasing urban areas for RCP 8.5 scenario showed higher value than that of RCP 4.5 scenario. Increase of urban areas is predicted by the fact that famlands are damaged. Especially RCP 8.5 scenario indicated more increase not only farmland but also forest than RCP 4.5 scenario. In addition, the decrease of farmland and forest showed higher level from metropolitan cities than province cities. The results of this study is believed to be used for basic data to clarify complex two-way effects quantitatively for future climate change, land-use/cover changes.

Prospects of future extreme precipitation in South-North Korea shared river basin according to RCP climate change scenarios (RCP 기후변화 시나리오를 활용한 남북공유하천유역 미래 극한강수량 변화 전망)

  • Yeom, Woongsun;Park, Dong-Hyeok;Kown, Minsung;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.647-655
    • /
    • 2019
  • Although problems such as river management and flood control have occurred continuously in the Imjin and Bukhan river basin, which are shared by South and North Korea, efforts to manage the basin have not been carried out consistently due to limited cooperation. As the magnitude and frequency of hydrologic phenomena are changing due to global climate change, it is necessary to prepare countermeasures for the rainfall variation in the shared river basin area. Therefore, this study was aimed to project future changes in extreme precipitation in South-North Korea shared river basin by applying 13 Global Climate Models (GCM). Results showed that the probability rainfall compared to the reference period (1981-2005) of the shared river basin increased in the future periods of 2011-2040, 2041-2070 and 2071-2100 under the Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios. In addition, the rainfall frequency over the 20-year return period was increased in all periods except for the future periods of 2041-2070 and 2071-2100 under the RCP4.5 scenario. The extreme precipitation in the shared river basin has increased both in magnitude and frequency, and it is expected that the region will have a significant impact from climate change.

A Development of Multi-Emotional Signal Receiving Modules for Cellphone Using Robotic Interaction

  • Jung, Yong-Rae;Kong, Yong-Hae;Um, Tai-Joon;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2231-2236
    • /
    • 2005
  • CP (Cellular Phone) is currently one of the most attractive technologies and RT (Robot Technology) is also considered as one of the most promising next generation technology. We present a new technological concept named RCP (Robotic Cellular Phone), which combines RT and CP. RCP consists of 3 sub-modules, $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Integration}$. $RCP^{Interaction}$ is the main focus of this paper. It is an interactive emotion system which provides CP with multi-emotional signal receiving functionalities. $RCP^{Interaction}$ is linked with communication functions of CP in order to interface between CP and user through a variety of emotional models. It is divided into a tactile, an olfactory and a visual mode. The tactile signal receiving module is designed by patterns and beat frequencies which are made by mechanical-vibration conversion of the musical melody, rhythm and harmony. The olfactory signal receiving module is designed by switching control of perfume-injection nozzles which are able to give the signal receiving to the CP-called user through a special kind of smell according to the CP-calling user. The visual signal receiving module is made by motion control of DC-motored wheel-based system which can inform the CP-called user of the signal receiving through a desired motion according to the CP-calling user. In this paper, a prototype system is developed for multi-emotional signal receiving modes of CP. We describe an overall structure of the system and provide experimental results of the functional modules.

  • PDF

Projection of Extreme Precipitation at the end of 21st Century over South Korea based on Representative Concentration Pathways (RCP) (대표농도경로 (RCP)에 따른 21세기 말 우리나라 극한강수 전망)

  • Sung, Jang Hyun;Kang, Hyun-Suk;Park, Suhee;Cho, ChunHo;Bae, Deg Hyo;Kim, Young-Oh
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.221-231
    • /
    • 2012
  • Representative Concentration Pathways (RCP) are the latest emission scenarios recommended to use for the fifth assessment report of Intergovernmental Panel on Climate Change. This study investigates the projection of extreme precipitation in South Korea during the forthcoming 21st Century using the generalized extreme value (GEV) analysis based on two different RCP conditions i.e., RCP 4.5 and 8.5. Maximum daily precipitation required for GEV analysis for RCP 4.5 and 8.5 are obtained from a high-resolution regional climate model forced by the corresponding global climate projections, which are produced within the CMIP5 framework. We found overall increase in frequency of extreme precipitation over South Korea in association with climate change. Particularly, daily extreme precipitation that has been occurred every 20 years in current climate (1980~2005) is likely to happen about every 4.3 and 3.4 years by the end of 21st Century (2070~2099) under the RCP 4.5 and 8.5 conditions, respectively.