• Title/Summary/Keyword: RC slabs

Search Result 189, Processing Time 0.018 seconds

STRUCTURAL TEST AND ANALYSIS OF RC SLAB AFTER FIRE LOADING

  • Chung, Chul-Hun;Im, Cho Rong;Park, Jaegyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.223-236
    • /
    • 2013
  • In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber.

Strength Properties of RC Slabs under Elevated Temperatures from Fire (화재시 온도증가로 인한 RC 슬래브의 강도 특성)

  • Im, Cho-Rong;Chung, Chul-Hun;Kim, Yu-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.48-60
    • /
    • 2010
  • The fire resistance performance of 2 RC slabs after exposure to the ISO-834 fire standard without loading has been experimentally investigated. A Comparison is made of the fire resistance performance between RC slabs without PP(polypropylene) fibers and RC slabs with PP fibers. From the fire test results, the presence of PP fibers in RC slabs can reduce spalling and enhance their fire resistance. Until now, the determination of fire resistance of reinforced concrete(RC) slabs has essentially been based on tabulated data. According to ACI 216 code and EUROCODE 2, the design of concrete structures is essentially based on tabulated data for appropriate concrete cover and various fire durations. From the comparison between fire test results and codes, current fire design provisions of codes such as the ACI 216 and the EUROCODE 2 are unconservative for estimating mechanical properties of RC slabs at elevated temperatures.

Static Test on Aged RC Bridge Slabs Strengthened With TYFO Glassfibers (TYFO 유리섬유로 보강된 노후교량 상판에 대한 정적실험)

  • 송재필;김철우;김기봉;정영수;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.621-626
    • /
    • 1997
  • Recently, TYFO glassfibers have been used for strengthening n aged RC bridge slabs because of low material cost and easy repairing work. The purpose of this study is to experimentally and analytically investigate the effect of TYFO glassfibers for enhancing the capacity of aged RC bridge slabs. Tes result shows that yield and ultimate strength of RC slabs with TYFO are increased as 11~18% and 25~35% comparing with those for RC slabs without TYFO, respectively, Also, ductility of RC slabs strengthened with TYFO have been significantly increased. Further tests have been performing on aged RC bridge slabs strengthened with carbon fiber strips.

  • PDF

Fatigue Test on Aged RC Bridge Slabs strengthened With TYFO Glassfibers (TYFO 유리섬유로 보강된 노후교량 상판에 대한 피로실험)

  • 정인근;김철우;김기봉;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.615-620
    • /
    • 1997
  • Further to static test on aged RC bridge slabs strengthened with TYFO glassfibers, fatigue tests have been done on aged RC bridge slabs with and without glassfibers. It can be seen from the test that fatigue behaviors of aged RC bridge slabs stiffened with TYFO glassfibers have been by and large improved comparing with those of aged RC bridge slabs without TYFO, but fatigue failure modes have not been changed become of bonding failure between tensile reinforcements and concrete. It is in particular noted from the test that bonding failure between concrete surface and TYFO have been observed. Further tests are strongly necessiated to develop appropriate anchoring method for improving fatigue life of aged RC bridge slabs strengthened with TYFO glassfibers.

  • PDF

Evaluation of Serviceability due to Vibration of Slab (건축구조물의 슬래브 진동에 의한 사용성 평가 연구)

  • Woo, Woon-Taek;Park, Tae-Won;Chung, Lan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.225-230
    • /
    • 2000
  • Recent building structures are superior in its ability but they are light and flexible, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However, recent high-rise apartment slabs are mostly light and long, the serviceability of RC slabs due to vibration could be a problem. In this paper, a basic investigation about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted on existing building located in Chung-Nam area. As a results, damping ratio, natural frequency, acceleration amplitude and displacement amplitude which were used to examine serviceability of the RC slabs were obtained. These results on the test building proved that its serviceability conditions were satisfied to meet the code against vibration.

  • PDF

Flexural Behavior of RC Slabs with Expansive Concrete (팽창콘크리트를 사용한 RC 슬래브의 휨거동에 관한 연구)

  • 박홍용;김철영;최익창;이호석;배상욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.585-588
    • /
    • 1999
  • This study is performed to verify the effect of CSA expansive additives for concrete by material properties test and 4 point-bendig test of RC slabs. The result shows that the variations of compress strength, bending strength, and modulus of elasticity of expansive concrete are the same as those of plain concrete. And the crack load of RC slabs with expansive concrete are increased in comparision with that of plain concrete, but the ultimate strength of RC slabs with expansive concrete is decreased.

  • PDF

Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs (재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action

  • Hossain, Khandaker M.A.;Lachemi, Mohamed;Easa, Said M.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.439-454
    • /
    • 2006
  • This paper develops an artificial neural network (ANN) model for uniformly loaded restrained reinforced concrete (RC) slabs incorporating membrane action. The development of membrane action in RC slabs restrained against lateral displacements at the edges in buildings and bridge structures significantly increases their load carrying capacity. The benefits of compressive membrane action are usually not taken into account in currently available design methods based on yield-line theory. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge decks economically with less than normal reinforcement. The processes involved in the development of ANN model such as the creation of a database of test results from previous research studies, the selection of architecture of the network from extensive trial and error procedure, and the training and performance validation of the model are presented. The ANN model was found to predict accurately the ultimate strength of fully restrained RC slabs. The model also was able to incorporate strength enhancement of RC slabs due to membrane action as confirmed from a comparative study of experimental and yield line-based predictions. Practical applications of the developed ANN model in the design process of RC slabs are also highlighted.

Numerical assessment of rectangular one- and two-way RC slabs strengthened with CFRP under impact loads

  • Mohamed Emara;Ahmed Hamoda;Jong Wan Hu
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, the flexural behaviors of one- and two-way reinforced concrete (RC) slabs strengthened with carbon-fiber-reinforced polymer (CFRP) strips under impact loads were investigated. The flexural strengthening of RC slabs under simulated static monotonic loads has been comprehensively studied. However, the flexural behavior of RC slabs strengthened with CFRP strips has not been investigated extensively, particularly those conducted numerically. Nonlinear three-dimensional finite element models were developed, executed, and verified against previous experimental results, producing satisfactory models with approximately 4% error. The models were extended to a parametric study, considering three geometric parameters: the slab rectangularity ratio, CFRP strip width, and CFRP strip configuration. Finally, the main results were used to derive a new formula for predicting the total deflection of RC slabs strengthened with CFRP strips under impact loads with an error of approximately 10%. The proposed equation reflected the slab rectangularity, CFRP strip width, equivalent slab stiffness, and dropped weight. Results indicated that the use of CFRP strips enhanced the overall impact performance, the wider the CFRP width, the better the enhancement. Moreover, the application of diagonally oriented CFRP strips diminished the cracking zone compared to straight strips. Additionally, the diagonal orientation of CFRP strips was more efficient for two-way slabs while the vertical orientation was found to be better in the case of one-way slabs.

[Retracted]Structural behavior of RC channel slabs strengthened with ferrocement

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.793-815
    • /
    • 2023
  • The current study looks at the experimental and numerical performance of ferrocement RC channel slabs reinforced with welded steel mesh, expanded steel mesh, and fiber glass mesh individually. Ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were subjected to flexural loadings as part of the testing program. The type of reinforcing materials, the number of mesh layers, and the reinforcement volume fraction are the key parameters that can be changed. The main goal is to determine the impact of using new inventive materials to reinforce composite RC channel slabs. Using ANSYS -16.0 Software, nonlinear finite element analysis (NLFEA) was used to simulate the behavior of composite channel slabs. Parametric study is also demonstrated to identify variables that can have a significant impact on the model's mechanical behavior, such as changes in slab dimensions. The obtained experimental and numerical results indicated that FE simulations had acceptable accuracy in estimating experimental values. Also, it's significant to demonstrate that specimens reinforced with fiber glass meshes gained approximately 12% less strength than specimens reinforced with expanded or welded steel meshes. In addition, Welded steel meshes provide 24% increase in strength over expanded steel meshes when reinforcing RC channel slabs. In general, ferrocement specimens tested under flexural loadings outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorbing capacity.