• Title/Summary/Keyword: RC shell structures

Search Result 24, Processing Time 0.026 seconds

Nonlinear Analysis of RC Structures Using Volume Control Method (체적 제어법을 이용한 철근 콘크리트 구조물의 비선형 해석)

  • Song Ha-Won;Nam Sang-Hyeok;Lee June-Hee;Lim Sang-Mook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.891-897
    • /
    • 2006
  • The volume control method which utilize a pressure node added into a finite shell element can overcome the drawbacks of conventional load control method and displacement control method. In this study, an improved volume control method is introduced for effective analysis of path-dependant behaviors of RC structures subjected to cyclic loading. RC shell structures including RC hollow columns are anlayized by discretizing the structures with layered shell elements and by applying in-plane two dimensional constitutive equations for concrete layers and reinforcement layers of the shell elements. The so-called path dependant volume control method is verified by comparing analysis results with other data including experimental results.

  • PDF

Path-dependant Nonlinear Analysis of RC shell Structures using Volume Control Method (체적제어법을 이용한 철근콘크리트 쉘구조물의 경로의존 비선형 해석)

  • 송하원;이준희;변근부
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.585-590
    • /
    • 2003
  • To overcome the drawbacks of conventional load control method and displacement control method, the so-called volume control method was developed by utilizing a pressure node added into a finite shell element. In this study, an improved volume control method which can analyze path-dependant behaviors of RC shell structures subjected to cyclic loading effectively is developed. RC shell structures are discretized with layered shell elements and in-plane two dimensional constitutive equations for concrete and reinforcements are implemented for each layer of the shell elements. Validity of the so-called path dependant volume control method is also verified by comparing analysis results with other data including experimental results.

  • PDF

Nonlinear Analysis of RC Structures using Isogeometric RM Shell Element

  • Park, Kyoung Sub;LEE, Sang Jin
    • Architectural research
    • /
    • v.20 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Nonlinear analysis of reinforced concrete (RC) structures is performed by using isogeometric Reissner-Mindlin (RM) shell element. The elasto-plastic constitutive model is employed to express the nonlinear behavior of concrete material and the equivalent smeared steel layer is introduced to represent steel reinforcement. The arc-length control method is used to produce the entire load-displacement path of RC structures. Finally, three benchmark tests are carried out to verify the performance of the present shell element. From isogeometric analysis, the present results show a good agreement with experimental results and it is provided as future benchmark test solutions.

Finite Element Analysis of Reinforced Concrete Hollow Columns Using Path-dependent Volume Control Method (경로의존형 체적제어법을 이용한 철근콘크리트 중공 기둥의 유한요소해석)

  • Song, Ha-Won;Nam, Sang-Hyeok;Lim, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.341-350
    • /
    • 2007
  • The volume control method which utilize a pressure node added into a finite shell element can overcome the drawbacks of conventional load control method and displacement control method. In this study, an improved volume control method is introduced for effective analysis of path-dependent behaviors of RC columns subjected to lateral cyclic loading or reversed cyclic loading along with compressive loading. RC shell structures and RC hollow columns are analyzed by discretizing the structures with layered shell elements and by applying in-plane two dimensional constitutive equations for concrete layers and reinforcement layers of the shell elements. The so-called path dependent volume control method as a finite element analysis technique is verified by comparing analysis results with other data including experimental results. The validity and applicability of the modeling technique is also confirmed by the comparison.

A Research on the Classified Structural System in Long-Span Structures (대공간 구조형식 분류체계에 관한 연구)

  • Yang, Jae-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.81-92
    • /
    • 2002
  • The objective of this paper is to help to make decision of the appropriate structural types in long span structured building due to range of span. For the intention, based on 7 forces of structural element, it is analized the relationships among 6 configurations of structural element(d/1), 25 structural types, 4 materials, and span-length known with 186 sample from 1850 to 1996. 1) bending forces: $club(1/100{\sim}1/10),\;plate(1/100{\sim}1/10),\;rahmen(steel,\;10{\sim}24m)\;simple\;beam(PC,\;10{\sim}35m)$ 2) shearing forces: $shell(1/100{\sim}1/1000)\;hyperbolic\;paraboloids(RC,25{\sim}97m)$ 3) shearing+bending forces: plate, folded $plate(RC21{\sim}59m)$ 4) compression axial forces: club, $arch(RC,\;32{\sim}65m)$ 5) compression+tension forces: shell, braced dome $shell(RC,\;40{\sim}201m),\;vault\;shell(RC,\;16{\sim}103m)$ 6) compression+tension axial forces: $rod(1/1000{\sim}1/100)$, cable(below 1/1000)+rod, coble+rod+membrane(below 1/1000), planar $truss(steel,\;31{\sim}134m),\;arch\;truss(31{\sim}135m),\;horizontal\;spaceframe(29{\sim}10\;8m),\;portal\;frame(39{\sim}55m),\;domical\;space\;truss(44{\sim}222m),\;framed\;\;membrane(45{\sim}110m),\;hybrid\;\;membrane\;(42{\sim}256m)$ 7) tension forces: cable, membrane, $suspension(60{\sim}150m),\;cable\;\;beam(40{\sim}130m),\;tensile\;membrane(42{\sim}136m),\;cable\;-slayed(25{\sim}90m),\;suspension\;membrane(24{\sim}97m),\;single\;layer\;pneumatic\;structure(45{\sim}231m),\;double\;layer\;pneumatic\;structures(30{\sim}44m)$

  • PDF

Composite deck construction for the rehabilitation of motorway bridges

  • Greiner, R.;Ofner, R.;Unterweger, H.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.67-84
    • /
    • 2002
  • Traffic decks of steel or composite motorway bridges sometimes provide the opportunity of using the composite action between an existing steel deck and a reinforced concrete plate (RC plate) in the process of rehabilitation, i.e., to increase the load-carrying capacity of the deck for concentrated traffic loads. The steel decks may be orthotropic decks or also unstiffened steel plates, which during the rehabilitation are connected with the RC plate by shear studs, such developing an improved local load distribution by the joint behaviour of the two plate elements. Investigations carried out, both experimentally and numerically, were performed in order to quantitatively assess the combined static behaviour and to qualitatively verify the usability of the structure for dynamic loading. The paper reports on the testing, the numerical simulation as well as the comparison of the results. Conclusions drawn for practical design indicated that the static behaviour of these structures may be very efficient and can also be analysed numerically. Further, the results gave evidence of a highly robust behaviour under fatigue equivalent cyclic traffic loading.

Nonlinear Analysis of Hollow RC Columns using Volume Control Method (체적제어법에 의한 철근콘크리트 중공 기둥의 비선형 해석)

  • Lim Sang-Mook;Song Ha-Won;Byun Keun Joo;Nam Sang-Hyeok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.159-162
    • /
    • 2005
  • To overcome the drawbacks of conventional load-control method and displacement-control method, the so-called volume-control method was developed by utilizing a pressure node added into a layered shell element. The pressure node has an increment of pressure as an additional degree of freedom of the shell element. In this study, the hollow RC columns are discretized with multi-layered shell elements and a modeling technique utilizing the volume-control analysis for various hollow RC column structures is introduced. The results of the nonlinear analysis using the modeling for hollow RC columns subjected to lateral reversed cyclic loading as well as lateral loading under compression are shown. Validity of the modeling technique is also verified by comparing the analysis results with experimental results and other analysis data.

  • PDF

Failure Analysis of RC Cylindrical Structures using Volume-Control Method (체적제어법에 의한 철근 콘크리트 원통형 구조물의 파괴 해석)

  • 송하원;방정용;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.195-202
    • /
    • 1999
  • In this Paper, a so-called volume-control method for nonlinear failure analysis of reinforced concrete cylindrical structures is proposed. The pressure node which defines uniform change of pressure on finite element is added into layered shell element utilizing in-plane constitutive models of reinforced concrete and layered formulation. With the pressure node formulation, one can control the change in volume enclosed by the cylindrical structures and determine the required change in pressure. An algorith of volume-control method is employed and failure analyses for RC cylindrical structures are carried out using proposed method.

  • PDF

Failure Analysis of RC Cylindrical Structures using Layered Shell Element with a Pressure Node (압력절점을 갖는 적층쉘 요소에 의한 콘크리트 원통형 구조물의 파괴해석)

  • 송하원;방정용;변근주;최강룡
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.475-484
    • /
    • 1999
  • 압력절점은 요소의 균등한 압력증분을 1개의 자유도로 갖는 절점이며, 유한요소의 하중-변위 평형방정식에 체적과 압력의 관계를 추가하여 한계압력 이후에서도 체적변화에 따른 압력증분을 직접적으로 제저할 수 있는 절점이다. 본 연구에서는 철근콘크리트의 평면 구성 방정식과 적층정식화에 적용한 쉘 요소에 압력절점을 추가하고 해석시 체적을 제어함으로써 철근콘크리트 원통형 구조에 대해 파괴까지의 극한내압 능력을 해석할 수 있는 체적제어 비선형 해석기법을 개발하였다. 본 논문에서 제안한 해석기법을 이용하여 철근콘크리트 원통형 구조물에 대하여 비선형 해석을 수행하여 한계압력과 한계압력 이후의 구조물의 거동을 예측하였으며 실험결과와 비교 검증하였다.

  • PDF

Nonlinear Analysis of RC Structures using Assumed Strain RM Shell Element

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Nonlinear analysis of reinforced concrete structures is carried out by using Reissner-Mindlin (RM) shell finite element (FE). The brittle inelastic characteristic of concrete material is represented by using the elasto-plastic fracture (EPF) material model with the relevant material models such as cracking criteria, shear transfer model and tension stiffening model. In particular, assumed strains are introduced in the formulation of the present shell FE in order to avoid element deficiencies inherited in the standard RM shell FE. The arc-length control method is used to trace the full load-displacement path of reinforced concrete structures. Finally, four benchmark tests are carried out and numerical results are provided as future reference solutions produced by RM shell element with assumed strains.