• 제목/요약/키워드: RC shear walls strengthened

검색결과 7건 처리시간 0.02초

Seismic performance of RC frame structures strengthened by HPFRCC walls

  • Yun, Hyun-Do;Hwang, Jin-Ha;Kim, Mee-Yeon;Choi, Seung-Ho;Park, Wan-Shin;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.389-399
    • /
    • 2020
  • An infill wall made of high-performance fiber-reinforced cementitious composites (HPFRCC) was utilized in this study to strengthen the reinforced concrete (RC) frame structures that had not been designed for seismic loads. The seismic performance of the RC frame structures strengthened by the HPFRCC infill walls was investigated through the experimental tests, and the test results showed that they have improved strength and deformation capabilities compared to that strengthened by the RC infill wall. A simple numerical modeling method, called the modified longitudinal and diagonal line element model (LDLEM), was introduced to consider the seismic strengthening effect of the infill walls, in which a section aggregator approach was also utilized to reflect the effect of shear in the column members of the RC frames. The proposed model showed accurate estimations on the strength, stiffness, and failure modes of the test specimens strengthened by the infill walls with and without fibers.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

RC자켓팅으로 보강된 기존 벽체의 면외방향 내진성능 실험평가 (Experimental Investigation of Out-of-Plane Seismic Resistance of Existing Walls Strengthened with RC Jacketing)

  • 엄태성;허무원;이상현;이범식;천영수
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.239-248
    • /
    • 2019
  • In this study, the out-of-plane seismic resistance of lightly-reinforced existing walls strengthened with thick RC jacket was investigated. The thick RC jacket with a thickness of 500 mm was placed at one side of the thin existing wall with a thickness of 150 mm. At the interface between the wall and RC jacket, a tee-shaped steel section with a number of anchor bolts and dowel bars was used as the shear connector. To investigate the connection performance and strengthening effects, the cyclic loading tests of four jacketed wall specimens were performed. The tests showed that the flexural strength of the jacketed walls under out-of-plane loading was significantly increased. During the initial behavior, the tee shear connector transferred forces successfully at the interface without slip. However, as the cracking, spalling, and crushing of the concrete increased in the exiting walls, the connection performance at the interface was significantly degraded and, consequently, the strength of the jacketed walls was significantly decreased. The flexural strength of the jacketed walls with tee shear connector was estimated considering the full and partial composite actions of the tee shear connector.

An experimental study on strengthening of vulnerable RC frames with RC wing walls

  • Kaltakci, M. Yasar;Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • 제41권6호
    • /
    • pp.691-710
    • /
    • 2012
  • One of the most popular and commonly used strengthening techniques to protect against earthquakes is to infill the holes in reinforced concrete (RC) frames with fully reinforced concrete infills. In some cases, windows and door openings are left inside infill walls for architectural or functional reasons during the strengthening of reinforced concrete-framed buildings. However, the seismic performance of multistory, multibay, reinforced concrete frames that are strengthened by reinforced concrete wing walls is not well known. The main purpose of this study is to investigate the experimental behavior of vulnerable multistory, multibay, reinforced concrete frames that were strengthened by introducing wing walls under a lateral load. For this purpose, three 2-story, 2-bay, 1/3-scale test specimens were constructed and tested under reversed cyclic lateral loading. The total shear wall (including the column and wing walls) length and the location of the bent beam bars were the main parameters of the experimental study. According to the test results, the addition of wing walls to reinforced concrete frames provided significantly higher ultimate lateral load strength and higher initial stiffness than the bare frames did. While the total shear wall length was increased, the lateral load carrying capacity and stiffness increased significantly.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different "code type" models

  • Yeghnem, Redha;Guerroudj, Hicham Zakaria;Amar, Lemya Hanifi Hachemi;Meftah, Sid Ahmed;Benyoucef, Samir;Tounsi, Abdelouahed;Bedia, El Abbas Adda
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.579-588
    • /
    • 2017
  • Creep and shrinkage are the main types of volume change with time in concrete. These changes cause deflection, cracking and stresses that affect durability, serviceability, long-term reliability and structural integrity of civil engineering infrastructure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) plates, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by three commonly used international "code type" models. The assessed are the: CEB-FIP MC 90 model, ACI 209 model and Bazant & Baweja (B3) model. The time-dependent behavior was investigated to analyze their seismic behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to demonstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements and eigenfrequencies modes.

개구부를 갖는 원전 SC구조 벽체의 구조거동 평가 (Evaluation of Structural Behavior of SC Walls in Nuclear Power Plant with Openings)

  • 정철헌;이한주
    • 대한토목학회논문집
    • /
    • 제32권5A호
    • /
    • pp.277-287
    • /
    • 2012
  • 지금까지 수행된 개구부가 존재하는 벽체에 대한 연구는 대부분 RC 벽체에 대해서 수행되었으며, SC(Steel plate Concrete) 벽체에 설치되는 개구부에 대한 연구는 수행된 예가 적다. 최근에 국내에서 개발된 SC 벽체는 원전구조물에 일부 적용되고 있지만, 관련 설계기준인 KEPIC-SNG에서도 개구부를 갖는 SC 벽체에 대한 설계법은 명확하게 정의되지 않았다. 본 연구에서는 원전구조물내 벽체에 설치되는 SC 벽체를 대상으로 개구부가 구조내력에 미치는 영향을 해석적 방법에 의해서 평가하였다. 비선형 해석 결과, 개구부가 설치되는 SC 벽체는 개구부 주변의 보강 여부가 내력에 미치는 영향이 크기 때문에 개구부 주변에 일정범위 이상의 보강이 이루어져야 하며, 개구부 주변이 보강된 경우는 개구부의 형상, 크기, 위치 및 설치개수에 관계없이 충분한 내력 및 연성을 확보할 수 있는 것으로 나타났다.