• Title/Summary/Keyword: RC shear connection

Search Result 75, Processing Time 0.024 seconds

Estimation of Shear Strength of RC Shear Connection for the Steel-Concrete Composite Girder (강합성 거더용 철근콘크리트 전단연결체의 전단강도 평가)

  • Shin, Hyun Seop;You, Young Jun;Jeong, Youn Ju;Eom, In Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.229-239
    • /
    • 2010
  • For the purpose of improvement of the load carrying capacity and constructibility of the conventional steel-concrete composite girder through a effective appliance of the construction materials and optimization of the girder section, a new type section of composite girder and RC shear connection were proposed. In this study shear strength of the RC shear connection is estimated, and the characteristics of shear load-slip behaviour is analyzed. Push-out tests on shear specimens and FEM analysis with various design parameters are carried out, and results are analyzed. The results of test and FEM analysis showed that shear strength of RC shear connection is underestimated by the design provisions of the current design code. By regression analysis a empirical equation for the estimation of shear strength of RC shear connection is proposed.

An Experimental Study on Shear Friction Behavior of RC Slab and SC(Steel Plate Concrete) Wall Structure with Connection Joint (RC 슬래브와 SC 벽 접합부의 전단마찰 거동에 관한 실험연구)

  • Lee, Kyung Jin;Hwang, Kyeong Min;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.623-634
    • /
    • 2013
  • In this study, the structure behavior of RC slab and SC shear wall connection was investigated. Also experimental study was performed to evaluate the factor of safety of demand shear connection strength in KEPIC SNG Standard. As a result, shear friction strength of connection was known about 300kN and shear strength of rebar increased according to the displacement increase. With the installment of the lower rebars, 40% shear strength increased compared to the non-rebar specimen.

Development of Connection Details of RC Wale-Steel Beam Joint Subjected to Axile and Shear Load (축력 및 전단력을 받는 RC 띠장-철골 보 접합부의 접합연결재 개발)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • The RC wale-steel beam stud connection may have smaller moment and shear resistance because the tensile and shear capacity of the studs are limited by the depth of RC beam. Especially, they are subjected to compressive axial load. This paper describes the experimental works to develop the connection details of RC wale-steel beam joints subjected to shear and axial loads. Shear connectors developed in this study are closed C type deformed bar, opened C type deformed bar, and U type deformed bar. From shear test, the shear performance of RC wale-steel beam joint with the developed connectors are compared with the stud connection. Test results indicated that the developed connectors were very effiecive to increase the shear strength.

Inelastic behavior of RC shear wall and steel girder shear connection on reinforcement details (보강상세에 따른 RC 전단벽과 강재 보 전단접합부의 비탄성 거동)

  • Song, Han-Beom;Lee, Jung-Han;Yang, Won-Jik;Kang, Dae-Eon;Lee, Kyung-Hwun;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.138-141
    • /
    • 2006
  • Shear wall-frame system is one of the most, if not the most, popular system for resisting lateral loads. The core is the primary lateral load-resisting systems, the perimeter frame is designed for gravity loads, and the connection between perimeter frame and core is generally a shear connection. Specially, single plate shear connection have gained considerable popularity in recent years due to their ease of fabrication and erection. Single plate shear connection should be designed to satisfy the dual criteria of shear strength and rotational ductility. An experimental program was undertaken to evaluate seismic behavior of single plate shear connection. The main test variable is the reinforcing detail of connection. Through the experimental program, the cyclic behavior of typical and reinforcing single plate shear connection was established.

  • PDF

Seismic behavior of RC building by considering a model for shear wall-floor slab connections

  • Soleimani-Abiat, Mehdi;Banan, Mohammad-Reza
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.381-397
    • /
    • 2015
  • Connections are the most important regions in a structural system especially for buildings in seismic zones. In R.C. structures due to large dimensions of members and lack of cognition of the stress distribution in a connection, reaching a comprehensive understanding of the connection behaviors becomes more complicated. The shear wall-to-floor slab connections in lateral load resisting systems have a potential weakness in transferring loads from slabs to shear walls which might change the path of load transformation to shear walls. This paper tries to investigate the effects of seismic load combinations on the behavior of slabs at their connection zones with the shear walls. These connection zones naturally are the most critical regions of the slabs in RC buildings. The investigation carried on in a simulated environment by considering three different structures with different shear wall layout. The final results of our study reveal that layout of shear walls in a building significantly affects the magnification of forces developed at the shear wall-floor slab connections.

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

Punching performance of RC slab-column connections with inner steel truss

  • Shi, Qingxuan;Ma, Ge;Guo, Jiangran;Ma, Chenchen
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.195-204
    • /
    • 2022
  • As a brittle failure mode, punching-shear failure can be widely found in traditional RC slab-column connections, which may lead to the entire collapse of a flat plate structure. In this paper, a novel RC slab-column connection with inner steel truss was proposed to enhance the punching strength. In the proposed connection, steel trusses, each of which was composed of four steel angles and a series of steel strips, were pre-assembled at the periphery of the column capital and behaved as transverse reinforcements. With the aim of exploring the punching behavior of this novel RC slab-column connection, a static punching test was conducted on two full-scaled RC slab specimens, and the crack patterns, failure modes, load-deflection and load-strain responses were thoroughly analyzed to explore the contribution of the applied inner steel trusses to the overall punching behavior. The test results indicated that all the test specimens suffered the typical punching-shear failure, and the higher punching strength and initial stiffness could be found in the specimen with inner steel trusses. The numerical models of tested specimens were analyzed in ABAQUS. These models were verified by comparing the results of the tests with the results of the analyzes, and subsequently the sensitivity of the punching capacity to different parameters was studied. Based on the test results, a modified critical shear crack theory, which could take the contribution of the steel trusses into account, was put forward to predict the punching strength of this novel RC slab-column connection, and the calculated results agreed well with the test results.

Punching Shear Strength of CFT Column to RC Flat Plate Connections Reinforced with Shearhead (전단머리 보강 CFT기둥-RC 무량판 접합부의 펀칭전단강도)

  • Kim, Jin-Won;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • This paper summarizes full-scale gravity-load test results on CFT column-to-RC flat plate connections reinforced with shearhead. CFT construction has many structural and constructional advantages over conventional steel and RC column construction and is gaining wide acceptance. Meanwhile the use of RC flat plate system in the basement and residential floors of tall buildings is often mandatory to reduce story height and enable rapid construction in domestic practice. Combining CFT column and flat plate floor is expected to result in further rapid construction. However, the issues related to connecting CFT column to RC flat plate have not been fully addressed yet. Several promising connecting schemes by using steel shearhead were proposed and tested in this study. Test results showed that the proposed connection can exhibit the punching shear strength higher than RC flat plate counterparts. An empirical formula that can reasonably predicts the punching shear strength of the proposed connection was also proposed.

Shear Strength of Hybrid Steel Beam with Reinforced Concrete Ends (단부 RC조와 중앙부 철골조로 이루어진 혼합구조 보의 전단내력에 관한 실험적 연구)

  • 김욱종;최종권;문정호;이리형;이동렬
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.457-462
    • /
    • 1998
  • An experimental study was carried out for hybrid steel beams with reinforced concrete ends. The purpose is to examine the shear strength and to develop the design methodology of the RC-S connection region. Tested were four beams which included a reference beam and three beams with various parameters. The reference beam was used to make a comparison with remaining specimens. The test parameters were focused mostly on the concentrated shear reinforcements. The ratio of concentrated shear reinforcements and their types were investigated in this study.

  • PDF

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.