• Title/Summary/Keyword: RC roof slab

Search Result 5, Processing Time 0.018 seconds

Structural Behavior of RC Roof Slab under Cyclic Temperature Load (반복 일사하중에 대한 철근콘크리트 지붕슬래브의 구조적 거동)

  • Seo, Soo-Yeon;Yoon, Seung-Joe;Cho, Yong-Man;Choi, Gi-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • A variation of temperature acting on a RC roof slab causes a change of stress in concrete since it expands during summer and is compressed during winter. This behavior repeats annually and makes an affection to the structural capacity of member for both serviceability and ultimate level. In this paper, a cyclic temperature loading variation is calculated by analyzing the weather data of Korea for 20 years. In addition, an experimental work is planned to find the long term effect of temperature variation. Six RC slab are made with same dimension. Test parameters are loading duration (10, 20, 30 year) and whether it has pre-damage or not. Observation of stiffness variations according to cyclic loading period shows that the serious stiffness drop happens after 10 year's cyclic loading at summer while after 30 year's loading at winter. From the fracture test about slabs damaged by long term cyclic loading, however, the capacity of member such as initial stiffness and maximum strength were not changed except yield strength according to the period of long term cyclic loading. The yield strength tends to decrease after 20 year's cyclic loading.

An Experimental Study on the Net Type Prestress Strengthening Method for Slab Bridges (네트형 슬래브교 외부강선 보강공법의 실험적 연구)

  • 한만엽;황태정
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.363-366
    • /
    • 2003
  • This study is to develop a strengthening method for RC slab bridges and rigid-frame bridges with external prestressing. In this study, we design the slab specimen that have a strengthening of the DB-13 and set up the longitudinal tendons placed on both side of slab strengthens the whole bridge, and lateral tendons placed under the slab strengthens the middle of slab, and conveys the load at middle slab to both sides. Structural analysis for the tensile force for strengthening were analysed and we know that displacement and strain was improved from this test. This method has no upward roof work, so it is very convenient for installing. And no spaces under the slab are need, so it is good for shallow slabs which has less space inder the slab.

  • PDF

Seismic performance of a 10-story RC box-type wall building structure

  • Hwang, Kyung Ran;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1193-1219
    • /
    • 2015
  • The purpose of this study is to evaluate the seismic performance of high-rise reinforced concrete (RC) box-type wall structures commonly used for most residential buildings in Korea. For this purpose, an analytical model was calibrated with the results of the earthquake simulation tests on a 1:5 scale 10-story distorted model. This calibrated model was then transformed to a true model. The performance of the true model in terms of the stiffness, strength, and damage distribution through inelastic energy dissipation was observed with reference to the earthquake simulation test results. The model showed high overstrength factors ranging from 3 to 4. The existence of slab in this box-type wall system changed the main resistance mode in the wall from bending moment to tension/compression coupled moment through membrane actions, and increased the overall resistance capacity by about 25~35%, in comparison with the common design practice of neglecting the slab's existence. The flexibility of foundation, which is also commonly neglected in the engineering design, contributes to 30~50% of the roof drift in the stiff direction containing many walls. The possibility of concrete spalling and reinforcement buckling and fracture under the maximum considered earthquake (MCE) in Korea appears to be very low when compared with the case of the 2010 Concepcion, Chile earthquake.

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

The Application of Post-tensioned Slab System to Tall Buildings (초고층 건축물의 포스트텐션 슬래브 시스템 적용)

  • Chung, Kwang-Ryang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.879-882
    • /
    • 2008
  • The market of Korea of post-tension system for building is growing up since 2000 and many engineers and construction companies show interest in it. This paper introduces the structure system and construction of post-tension tall buildings including recent trend in the industry of post-tension system for buildings in Korea and the point to be considered when design post-tensioned tall building. Park Polis is composed of two towers of 39 stories with a level to the top of the roof +144m and is currently under construction at Ulsan in Korea. This building designed as the unbonded post-tension floor system and will be the tallest and first high-rise post-tensioned building in Korea. The structural system is composed of the flat slabs, perimeter columns and core walls. At first, this building had designed as regular RC flat slab with perimeter beams. However, floor structure system was reconsidered because the construction company wants to improve efficiency of construction. As a result, the floor system of PARK POLIS re-designed as PT flat slab.

  • PDF