• Title/Summary/Keyword: RC retaining wall

Search Result 12, Processing Time 0.034 seconds

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Numerically and empirically determination of blasting response of a RC retaining wall under TNT explosive

  • Toy, Ahmet Tugrul;Sevim, Baris
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.493-512
    • /
    • 2017
  • Blast loads may considerably affect the response of structures. In previous years, before computer analysis programs, the parameters of blast effects were calculated with empirical methods, consequently some researchers had proposed equations to find out the phenomenon. In recent year's computer analysis programs have developed already, so detailed solutions can be made numerically. This paper describes the blasting response of the structures using numerical and empirical methods. For the purpose, a reinforced concrete retaining wall is modelled using ANSYS Workbench software, and the model is imported to ANSYS AUTODYN software to perform explicit analyses. In AUTDYN software, a sum of TNT explosive is defined 5,5 m away from the wall and solution is done. Numerical results are compared with those of obtained from empirical equations. Similar study is also considered for equal explosive which is the 4 m away from the wall. The results are represented by graphics and contour diagrams of such as displacements and pressures. The results showed that distance of explosive away from the wall is highly affected the structural response of it.

Flexural performance of composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.525-545
    • /
    • 2020
  • This paper presents a new structural system to use as retaining walls. In civil works, there is a general trend to use traditional reinforced concrete (RC) retaining walls to resist soil pressure. Despite their good resistance, RC retaining walls have some disadvantages such as need for huge temporary formworks, high dense reinforcing, low construction speed, etc. In the present work, a composite wall with only one steel plate (steel-concrete) is proposed to address the disadvantages of the RC walls. In the proposed system, steel plate is utilized not only as tensile reinforcement but also as a permanent formwork for the concrete. In order to evaluate the efficiency of the proposed SC composite system, an experimental program that includes nine SC composite wall specimens is developed. In this experimental study, the effects of different parameters such as distance between shear connectors, length of shear connectors, concrete ultimate strength, use of compressive steel plate and compressive steel reinforcement are investigated. In addition, a 3D finite element (FE) model for SC composite walls is proposed using the finite element program ABAQUS and load-displacement curves from FE analyses were compared against results obtained from physical testing. In all cases, the proposed FE model is reasonably accurate to predict the behavior of SC composite walls under out-of-plane loads. Results from experimental work and numerical study show that the SC composite wall system has high strength and ductile behavior under flexural loads. Furthermore, the design equations based on ACI code for calculating out-ofplate flexural and shear strength of SC composite walls are presented and compared to experimental database.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

A Study on the Evaluation of Field Installation Damage and Strength Reduction Factor of Geogrid for Reinforced Retaining Wall (보강토 옹벽용 지오그리드의 현장 내시공성 및 강도 감소계수 평가에 관한 연구)

  • Park, Juhwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.5-12
    • /
    • 2012
  • Recently the installation of reinforced earth retaining walls in the domestic construction site has increased, surpassing conventional RC walls. These reinforced walls have various types depending on the reinforcing material, installation method and the form of face panel. However, there are difficulties in design and construction management due to the unproved safety of construction method. In case of reinforcing materials, despite the fact that they come in all different sizes and types produced by small businesses or partially imported with cheap price and low quality, no proper standards for designing the walls have been suggested. In order to apply reinforced retaining wall system to broad cases and design the walls effectively considering site conditions, specific design and construction guidelines for efficient construction management are needed. In conclusion, this study verified that reduction factors can be greatly affected by grain sizes and stiffness of backfill materials and granularity range, therefore in case of relatively large construction site, it is required to redesign the reinforced retaining wall by evaluating site installation resistance test, applying respective reduction factors to each backfill material and select the right geogrid depending on the usage of retaining wall so as to enhance the safety of reinforced earth retaining walls with efficiency.

Genetic algorithm-based geometric and reinforcement limits for cost effective design of RC cantilever retaining walls

  • Mansoor Shakeel;Rizwan Azam;Muhammad R. Riaz
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.337-348
    • /
    • 2023
  • The optimization of reinforced concrete (RC) cantilever retaining walls is a complex problem and requires the use of advanced techniques like metaheuristic algorithms. For this purpose, an optimization model must first be developed, which involves mathematical complications, multidisciplinary knowledge, and programming skills. This task has proven to be too arduous and has halted the mainstream acceptance of optimization. Therefore, it is necessary to unravel the complications of optimization into an easily applicable form. Currently, the most commonly used method for designing retaining walls is by following the proportioning limits provided by the ACI handbook. However, these limits, derived manually, are not verified by any optimization technique. There is a need to validate or modify these limits, using optimization algorithms to consider them as optimal limits. Therefore, this study aims to propose updated proportioning limits for the economical design of a RC cantilever retaining wall through a comprehensive parametric investigation using the genetic algorithm (GA). Multiple simulations are run to examine various design parameters, and trends are drawn to determine effective ranges. The optimal limits are derived for 5 geometric and 3 reinforcement variables and validated by comparison with their predecessor, ACI's preliminary proportioning limits. The results indicate close proximity between the optimized and code-provided ranges; however, the use of optimal limits can lead to additional cost optimization. Modifications to achieve further optimization are also discussed. Besides the geometric variables, other design parameters not covered by the ACI building code, like reinforcement ratios, bar diameters, and material strengths, and their effects on cost optimization, are also discussed. The findings of this investigation can be used by experienced engineers to refine their designs, without delving into the complexities of optimization.

Study on Development of CWS (buried wale Continuous Wall System) Method (CWS공법(buried wale Continuous Wall System)의 개발에 관한 연구)

  • Lee Jeong-Bae;Lim In-Sig;Chun Sung-Chul;Oh Boh-Wan;Ha In-Ho;Rhim Hong-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.2 s.20
    • /
    • pp.81-89
    • /
    • 2006
  • A down construction method is frequently used in these days to reduce popular discontent and to assure sufficient working space at early stage in downtown area. There are two main problems in the existing down construction method. One is a confliction between frame works and excavation works, and the other is a cold joint in retaining wall which is unavoidable due to a sequence of concrete placement and induces a water leakage. Therefore, a new method is needed to overcome these problems. The CWS (buried wale Continuous Wall System) method was developed by authors. By replacing RC perimeter beam with embedded steel wale, the steel frame works of substructure can be simplified and the water leakage can be prevented using continuous retaining wall. Consequently, the improved qualify and reduction of construction period can be obtained from CWS method.

Field Application of Up-Up Construction Using Buried Wale Continuous Walt System Method (CWS공법(Buried Wale Continuous Wall System)을 적용한 Up-Up 시공사례)

  • Lee Jeong-Bae;Lim In-Sig;Kim Dong-Hyun;Oh Bo-Hwan;Ha In-Ho;Rhim Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.1-4
    • /
    • 2006
  • A down construction method is frequently used in these days to reduce popular discontent and to assure sufficient working space at early stage in downtown area. There are two main problems in the existing down construction method. One is a confliction between frame works and excavation works, and the other is a cold joint in retaining wall which is unavoidable due to a sequence of concrete placement and induces a water leakage. Therefore, a new method is needed to overcome these problems. The CWS (buried wale Continuous Wall System) method was developed by authors. By replacing RC perimeter beam with embedded steel wale, the steel frame works of substructure can be simplified and the water leakage can be prevented using continuous retaining wall. Consequently, the improved duality and reduction of construction period can be obtained from CWS method.

  • PDF

Damage rate assessment of cantilever RC walls with backfill soil using coupled Lagrangian-Eulerian simulation

  • Javad Tahamtan;Majid Gholhaki;Iman Najjarbashi;Abdullah Hossaini;Hamid Pirmoghan
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.231-245
    • /
    • 2024
  • In recent decades, the protection and vulnerability of civil structures under explosion loads became a critical issue in terms of security, which may cause loss of lives and structural damage. Concrete retaining walls also restrict soils and slopes from displacements; meanwhile, intensive temporary loading may cause massive damage. In the current study, the modified Johnson-Holmquist (also known as J-H2) material model is implemented for concrete materials to model damages into the ABAQUS through user-subroutines to predict the blasting-induced concrete damages and volume strains. For this purpose, a 3D finite-element model of the concrete retaining wall was conducted in coupled Eulerian-Lagrangian simulation. Subsequently, a blast load equal to 500 kg of TNT was considered in three different positions due to UFC 3-340-02. Influences of the critical parameters in smooth blastings, such as distance from a free face, position, and effective blasting time, on concrete damage rate and destroy patterns, are explored. According to the simulation results, the concrete penetration pattern at the same distance is significantly influenced by the density of the progress environment. The result reveals that the progress of waves and the intensity of damages in free-air blasting is entirely different from those that progress in a dense surrounding atmosphere such as soil. Half-damaged elements in air blasts are more than those of embedded explosions, but dense environments such as soil impose much more pressure in a limited zone and cause more destruction in retaining walls.

A Case Study on the Reinforcement of Existing Damaged Geogrid Reinforced Soil Wall Using Numerical Analyses (수치해석을 이용한 기존 피해 보강토 옹벽의 보강에 관한 사례 연구)

  • Won, Myoung-Soo;Langcuyan, Christine P.;Choi, Jeong-Ho;Ha, Yang-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • There have been often cases of collapse for geogrid reinforced soil (GRS) retaining wall. Hence, social interest in the reinforcement and restoration of the collapsed GRS wall is increasing day by day. However, there are only few researches. For this reason, a series of numerical analyses using the Plaxis 2D program was conducted in this study to analyze the suitable reinforcement methods that can be applied on the existing damaged GRS wall caused by overturning of the modular blocks facing and the surface settlement at the backfill as the results from the design failure. The restoration plan used in this study is composed of two cases: (Case 1) soil nailing reinforcement and reinforced concrete (RC) wall facing construction on the existing damaged GRS wall; and (Case 2) removal of the entire damaged GRS wall and then reconstruction. The results on the internal stability of the GRS wall show that Case 1 obtained a greater safety factor than Case 2 for tensile force while Case 2 had a greater safety factor than Case 1 for pullout failures. Case 1 was found to be more stable than Case 2 in terms of the global slope safety by shear strength reduction method and the external deformation behavior by numerical analysis. In this study, the existing damaged GRS wall which was reinforced using Case 1 method shows more stable external behavior.