• 제목/요약/키워드: RC plates

검색결과 165건 처리시간 0.021초

탄소섬유 보강판 전용 정착장치를 이용한 외부 프리스트레싱 보강공법 사례연구 (Case study on the external prestressing method strengthened carbon fiber reinforced plates.)

  • 정원용;임공묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.1003-1006
    • /
    • 2003
  • In recent years, FRP plates have been studied for flexural reinforcement of RC structures due to easy installation and good Quality control. This study presents experimental field test results for the effectiveness of flexural reinforcement of the RC slab using external prestressing with thin CFRP strips made by the pultrusion process. It was demonstrated that flexural strength was considerably increased with relatively easy installation when compared to the other methods used for the composite reinforcement.

  • PDF

FRP-콘크리트 경계면 삽입플레이트 활용을 통한 휨 보강 철근콘크리트 보의 성능개선 (The Performance Improvement of Strengthened RC Beams Using an Inserted Plate)

  • 안미경;이상문;정우영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.73-74
    • /
    • 2010
  • 콘크리트 보의 휨 보강을 위한 FRP 플레이트가 콘크리트 하면에 직접 부착될 경우 콘크리트-FRP 부착경계면에서 대부분 콘크리트 박리파괴에 의한 최종파괴가 주로 발생된다. 본 연구에서는 이들 콘크리트 박리에 의한 취성파괴를 지연시켜 부착 보강재의 수명을 보다 더 연장시키기 위하여 콘크리트와 보강재 접착경계면 사이에 얇은 두께의 중간 삽입재(알루미늄, 티타늄)를 앵커와 에폭시로 부착, 기존의 FRP 플레이트 보강방법 보다 개선된 휨 성능 보강방법에 관한 연구이다. 이를 위하여 본 연구에서는 상대적으로 가격이 저렴한 알루미늄과 재료적 성능이 우수한 티타늄을 중간삽입제로 이용, 콘크리트와 보강재 사이의 부착하였으며 이들의 활용에 따른 휨 연성 개선과 콘크리트 박리파괴 지연에 대한 효과를 측정하였다.

  • PDF

강판으로 보강된 RC 보의 조기파괴거동 해석 (An analytical Study on the premature Failure Behavior of RC Beams Strengthened by Steel Plates)

  • 심종성;김규선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.821-826
    • /
    • 1998
  • The design methods for the steel plate strengthened RC structures are not well established yet because the structural behavior of plated RC beams is more complex than that of regular unplated ones. The main purpose of this paper is to present the premature failure mechanism of steel plate strengthened RC beams. The analytical models of interfacial stress and normal are also proposed in this paper. The comparisons between the analytical results using the proposed theory and experimental ones relatively satisfied.

  • PDF

New technique for strengthening reinforced concrete beams with composite bonding steel plates

  • Yang, Su-hang;Cao, Shuang-yin;Gu, Rui-nan
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.735-757
    • /
    • 2015
  • Composite bonding steel plate (CBSP) is a newly developed type of structure strengthened technique applicable to the existing RC beam. This composite structure is applicable to strengthening the existing beam bearing high load. The strengthened beam consists of two layers of epoxy bonding prestressed steel plates and the RC beam sandwiched in between. The bonding enclosed and prestressed U-shaped steel jackets are applied at the beam sides. This technique is adopted in case of structures with high longitudinal reinforcing bar ratio and impracticable unloading. The prestress can be generated on the strengthening steel plates and jackets by using the CBSP technique before loading. The test results of full-scale CBSP strengthened beams show that the strength and stiffness are enhanced without reduction of their ductility. It is demonstrated that the strain hysteresis effect can be effectively overcome after prestressing on the steel plates by using such technique. The applied plates and jackets can jointly behave together with the existing beam under the action of epoxy bonding and the mechanical anchorage of the steel jackets. The simplified formulas are proposed to calculate the prestress and the ultimate capacities of strengthened beams. The accuracy of formulas was verified with the experimental results.

외부철판이 사용된 DH Beam의 휨거동에 대한 실험 및 비선형해석 (Experiment and Nonlinear Analysis of DH Beams with Steel Form)

  • 문정호;오영훈
    • 콘크리트학회논문집
    • /
    • 제26권2호
    • /
    • pp.171-179
    • /
    • 2014
  • 이 연구는 DH beam의 구조성능을 평가하는 것을 목적으로 하였다. DH beam을 사용하는 DH 공법은 얇은 철판을 성형하여 거푸집 및 구조적 역할을 할 수 있는 철판을 철근과 함께 공장에서 선조립하여 현장으로 반입하여 콘크리트를 타설하는 공법이다. 이 때 DH 판이 거푸집 역할 뿐 아니라 휨강도에 기여할 것으로 여겨져서 이 연구에서는 DH 판의 휨강도 기여도를 평가하고자 하였다. 총 5개의 실험체를 대상으로 실험 및 해석적 연구를 수행하였다. 실험체는 2개의 정모멘트 실험체, 2개의 부모멘트 실험체, 그리고 1개의 RC 실험체로 구성되었다. RC 실험체는 DH beam과 비교를 목적으로 제작하였다. DH beam에 대한 실험 결과는 휨강도를 산정하는 설계식 그리고 RC 실험체에 대한 실험 결과 등과 비교를 통하여 DH beam은 철판이 항복하면서 충분히 휨강도에 기여하고 있음을 알 수 있었다. 그리고 비선형 구조해석에서는 두 개의 실험체에 대하여 DH 판이 있는 경우와 없는 경우를 대상으로 휨강도, 콘크리트의 주인장변형률, 그리고 철근의 응력을 비교하였으며, 해석에서도 DH 판이 휨강도에 충분히 기여함을 알 수 있었다. 이상과 같은 실험 및 해석적 연구의 결과 DH beam의 철판은 콘크리트와 합성단면을 형성하여 충분한 휨강도를 갖는 것으로 보였다.

Nonlinear analysis of RC beams strengthened by externally bonded plates

  • Park, Jae-Guen;Lee, Kwang-Myong;Shin, Hyun-Mock;Park, Yoon-Je
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.119-134
    • /
    • 2007
  • External bonding of steel or FRP plates to reinforced concrete (RC) structures has been a popular method for strengthening RC structures; however, unexpected premature failure often occurs due to debonding between the concrete and the epoxy. We proposed a Coulomb criterion with a constant failure surface as the debonding failure criterion for the concrete-epoxy interface. Diagonal shear bonding tests were conducted to determine the debonding properties that were related to the failure criterion, such as the angle of internal friction and the coefficient of cohesion. In addition, an interface element that utilized the Coulomb criterion was implemented in a nonlinear finite element analysis program to simulate debonding failure behavior. Experimental studies and numerical analysies on RC beams strengthened by an externally bonded steel or FRP plate were used to determine the range of the coefficient of cohesion. The results that were presented prove that premature failure loads of strengthened RC beams can be predicted with using the bonding properties and the finite element program with including the proposed Coulomb criterion.

탄소 및 유리섬유 풀트루션 스트립을 이용한 RC보의 휨보강 연구 (Flexural Reinforcement of RC Beams with Pultruded Carbon and Glass Fiber Strip)

  • 정원용;이성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.689-692
    • /
    • 1999
  • In recent years, FRP plates have been studied for flexural reinforcement of RC structures due to easy installation and good quality control. This study presents experimental results for the effectiveness of flexural reinforcement of the RC beams using thin CFRP and GFRP stripe made by the pultrusion process. For the selected FRP strips of various thicknesses and widths, it was demonstrated that both flexural strength and ductility were considerably increased with relatively easy installation when compared to the other methods used for the composite reinforcement.

  • PDF

Strengthening of hollow brick infill walls with perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Seydanlioglu, Mahmut
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.181-199
    • /
    • 2014
  • The infill walls, whose contribution to the earthquake resistance of a structure is generally ignored due to their limited lateral rigidities, constitute a part of the lateral load bearing system of an RC frame structure. A common method for improving the earthquake behavior of RC frame structures is increasing the contribution of the infill walls to the overall lateral rigidity by strengthening them through different techniques. The present study investigates the influence of externally bonded perforated steel plates on the load capacities, rigidities, and ductilities of hollow brick infill walls. For this purpose, a reference (unstrengthened) and twelve strengthened specimens were subjected to monotonic diagonal compression. The experiments indicated that the spacing of the bolts, connecting the plates to the wall, have a more profound effect on the behavior of a brick wall compared to the thickness of the strengthening plates. Furthermore, an increase in the plate thickness was shown to result in a considerable improvement in the behavior of the wall only if the plates are connected to the wall with closely-spaced bolts. This strengthening technique was found to increase the energy absorption capacities of the walls between 4 and 14 times the capacity of the reference wall. The strengthened walls reached ultimate loads 30-160% greater than the reference wall and all strengthened walls remained intact till the end of the test.

긴장된 CFRP판으로 보강된 대규모 RC 슬래브의 휨성능 평가 (Evaluation of Flexural Strength Capacity of Large Scale RC Slabs Strengthened with Prestressed CFRP Plate)

  • 홍기남;한상훈;이병노;권용길
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.71-77
    • /
    • 2010
  • This paper presents the results of a study on flexural capacity of large size RC slabs strengthened with carbon fiber reinforced polymer(CFRP) plates. A total of 5 specimens of 6.0m length were tested in four point bending after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with two prestress levels, 0.4% and 0.6% of CFRP plate strain. Test variables included the type of strengthening, prestressing level, and the effects according to each test variables are analysed. The experimental results show that proposed methods can increase significantly the flexural capacity such as strength, stiffness of the beam and the increase ranged between 36.2% and 63.2% of the load-carrying capacity of the control beams. The non-prestressed specimen failed by separation of the plate from the beam due to premature debonding while most of the prestressed specimens failed by CFRP plate fracture. And the cracking loads and maximum loads were increased proportionally to the prestress level.

Composite deck construction for the rehabilitation of motorway bridges

  • Greiner, R.;Ofner, R.;Unterweger, H.
    • Steel and Composite Structures
    • /
    • 제2권1호
    • /
    • pp.67-84
    • /
    • 2002
  • Traffic decks of steel or composite motorway bridges sometimes provide the opportunity of using the composite action between an existing steel deck and a reinforced concrete plate (RC plate) in the process of rehabilitation, i.e., to increase the load-carrying capacity of the deck for concentrated traffic loads. The steel decks may be orthotropic decks or also unstiffened steel plates, which during the rehabilitation are connected with the RC plate by shear studs, such developing an improved local load distribution by the joint behaviour of the two plate elements. Investigations carried out, both experimentally and numerically, were performed in order to quantitatively assess the combined static behaviour and to qualitatively verify the usability of the structure for dynamic loading. The paper reports on the testing, the numerical simulation as well as the comparison of the results. Conclusions drawn for practical design indicated that the static behaviour of these structures may be very efficient and can also be analysed numerically. Further, the results gave evidence of a highly robust behaviour under fatigue equivalent cyclic traffic loading.