• Title/Summary/Keyword: RC model

Search Result 1,262, Processing Time 0.026 seconds

Evaluation of High Flux Combined with Pretreatment Process for Application of Decentralized Water Supply System with Ceramic Membrane (세라믹 분리막의 분산형 용수공급 시스템 적용을 위한 전처리 연계공정의 고플럭스 평가)

  • Kang, Joon-Seok;Park, Seo Gyeong;Lee, Jeong Eun;Kang, So Yeon;Lee, Jeong Jun;Quyen, Vo Thi Kim;Kim, Seongsu;Kim, Han-Seung
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.61-72
    • /
    • 2018
  • In this study, applicability of the decentralized water supply system were investigated by the high flux evaluation using ceramic membrane with combined pretreatment process. A) filtration process increased the transmembrane pressure of 1.4 kPa and 89.5 kPa on 2 and $5m^3/m^2{\cdot}d$ of filtration flux, respectively, the physical backwashing recovery rate were less than 28.6%. The (B) Coag./Floc. - Sedi. combined process with 4 mg / L of A-PAC showed that the transmembrane pressure increased to within 6 kPa, the physical backwashing recovery rate was over 37.9 % higher than (A) Filtration process. (C) Coag./Floc. combined process showed an increase of transmembrane pressure compared with (B) Coag./Floc. - Sedi. combined process, physical backwashing recovery rate was over 84%. As a result of the membrane fouling analysis using the resistance in series model, the combined pretreatment process showed that the cake resistance (Rc) was more than 92% at membrane filtration flux of $2m^3/m^2{\cdot}d$. In the (C) Coag./Floc. combined process, cake resistance(Rc) was over 86% on high flux conditions. The coagulation floc contained in influent was removed by the membrane, and the cake layer formed with the removed floc was identified as reversible fouling resistance which could be recovered by physical backwashing. The decentralized water supply system, which has the limitation of site area and installation space, is considered to could be operation of high flux of ceramic membrane by applying (C) Coag./Floc. combined process without sedimentation process.

Structural Behavior of RC Beams with Headed Bars using Finite Element Analysis (유한요소해석 기반 확대머리 이형철근 상세 따른 RC보의 구조성능 효과 분석)

  • Kim, Kun-Soo;Park, Ki-Tae;Park, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, the structural behavior by the details of the lap region with the headed bar was estimated through finite element analysis. To solve the finite element analysis of the anchorage region with complex contact conditions and nonlinear behavior, a quasi-static analysis technique by explicit dynamic analysis was performed. The accuracy of the finite element model was verified by comparing the experimental results with the finite element analysis results. It was confirmed that the quasi-static analysis technique well reflected the behavior of enlarged headed bar connection. As a result of performing numerical analysis using 21 finite element models with various development lengths and transverse reinforcement indexes, it was confirmed that the increase of development length and transverse reinforcement index improved the maximum strength and ductility. However, to satisfy the structural performance, it should be confirmed that both design variables(development length and transverse reinforcement index) must be enough at the design criteria. In the recently revised design standard(KDS 14 20 52 :2021), a design formula of headed bar that considers both the development length and the transverse reinforcing bar index is presented. Also the results of this study confirmed that not only the development length but also transverse reinforcing bars have a very important effect.

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.

Compound K improves skin barrier function by increasing SPINK5 expression

  • Park, No-June;Bong, Sim-Kyu;Lee, Sullim;Jung, Yujung;Jegal, Hyun;Kim, Jinchul;Kim, Si-Kwan;Kim, Yong Kee;Kim, Su-Nam
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.799-807
    • /
    • 2020
  • Background: The skin acts as a barrier to protect organisms against harmful exogenous agents. Compound K (CK) is an active metabolite of ginsenoside Rb1, Rb2 and Rc, and researchers have focused on its skin protective efficacy. In this study, we hypothesized that increased expression of the serine protease inhibitor Kazal type-5 (SPINK5) may improve skin barrier function. Methods: We screened several ginsenosides to increase SPINK5 gene promoter activity using a transactivation assay and found that CK can increase SPINK5 expression. To investigate the protective effect of CK on the skin barrier, RT-PCR and Western blotting were performed to investigate the expression levels of SPINK5, kallikrein 5 (KLK5), KLK7 and PAR2 in UVB-irradiated HaCaT cells. Measurement of transepidermal water loss (TEWL) and histological changes associated with the skin barrier were performed in a UVB-irradiated mouse model and a 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis-like model. Results: CK treatment increased the expression of SPINK5 and decreased the expression of its downstream genes, such as KLKs and PAR2. In the UVB-irradiated mouse model and the DNCB-induced atopic dermatitis model, CK restored increased TEWL and decreased hydration and epidermal hyperplasia. In addition, CK normalized the reduced SPINK5 expression caused by UVB or DNCB, thereby restoring the expression of the proteins involved in desquamation to a level similar to normal. Conclusions: Our data showed that CK contributes to improving skin-barrier function in UVB-irradiated and DNCB-induced atopic dermatitis-like models through SPINK5. These results suggest that therapeutic attempts with CK might be useful in treating barrier-disrupted diseases.

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

One-Dimensional Heat Transfer Model to Predict Temperature Distribution in Voided slabs subjected to fire (화재 시 중공슬래브의 온도분포 예측을 위한 1방향 열전달 모델)

  • Chung, Joo-Hong;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • In general, a reinforced concrete slabs are known to have a high fire resistance performance due to thermal properties of concrete materials. However, according to previous research, the thermal behavior of voided slabs is reported to be different from that of conventional RC solid slabs, and the differences seem to be caused by the air layer formed inside the voided slab. Therefore, it is difficult to estimate the temperature distribution of the voided slab under fire by using the existing methods that do not take into account the air layer inside the voided slab. In this study, a numerical analysis model was proposed to estimate the temperature distribution of voided slabs under fire, and evaluated. Heat transfer of slabs under fire is generally caused by conduction, convection and radiation, and time-dependent temperature changes of slab can be determined considering these phenomena. This study proposed a numerical method to estimate the temperature distribution of voided slabs under fire based on a finite difference method in which a cross-section of the slab is divided into a number of layers. This method is also developed to allow consideration of heat transfer through convection and radiation in air layer inside of slabs. In addition, the proposed model was also validated by comparison with the experimental results, and the results showed that the proposed model appropriately predicts the temperature distribution of voided slabs under fire.

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

A Research on RC3(RMF-CMMC Common Compliance) meta-model development in preparation for Defense Cybersecurity (국방 사이버보안을 위한 RMF-CMMC 공통규정준수 메타모델 개발방안 연구)

  • Jae-yoon Hwang;Hyuk-jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.123-136
    • /
    • 2024
  • The U.S. Department of Defense, leading global cybersecurity policies, has two main cybersecurity frameworks: the Cybersecurity Maturity Model Certification (CMMC) for external defense industry certification, and the Risk Management Framework (RMF) for internal organizational security assessments. For Republic of Korea military, starting from 2026, the Korean version of RMF (K-RMF) will be fully implemented. Domestic defense industry companies participating in projects commissioned by the U.S. Department of Defense must obtain CMMC certification by October 2025. In this paper, a new standard compliance meta-model (R3C) development methodology that can simultaneously support CMMC and RMF security audit readiness tasks is introduced, along with the implementation results of a compliance solution based on the R3C meta-model. This research is based on practical experience with the U.S. Department of Defense's cybersecurity regulations gained during the joint project by the South Korean and U.S. defense ministries' joint chiefs of staff since 2022. The developed compliance solution functions are being utilized in joint South Korean-U.S. military exercises. The compliance solution developed through this research is expected to be available for sale in the private sector and is anticipated to be highly valuable for domestic defense industry companies that need immediate CMMC certification.

Comparative Analysis of Effective RCS Prediction Methods for Chaff Clouds (효과적인 채프 구름의 RCS 예측 방법 비교 분석 연구)

  • Kim, Min;Lee, Myung-Jun;Lee, Seong-Hyeon;Park, Sung-ho;Kong, Young-Joo;Woo, Seon-Keol;Kim, Hong-Rak;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • Radar cross section (RCS) analysis of chaff clouds is essential for the accurate detection and tracking of missile targets using radar. For this purpose, we compare the performance of two existing methods of predicting RCS of chaff clouds. One method involves summing up the RCS values of individual chaffs in a cloud, while the other method predicts the RCS values using aerodynamic models based on the probability density function. In order to compare and analyze the two techniques more precisely, the RCS of a single chaff computer-aided design model consisting of a half wavelength dipole was calculated using the commercial electromagnetic numerical analysis software, FEKO 7.0, to estimate the RCS values of chaff clouds via simulation. Thus, we verified that our method using the probability density distribution model is capable of analyzing the RCS of chaff clouds more efficiently.