• Title/Summary/Keyword: RC model

Search Result 1,262, Processing Time 0.024 seconds

Effects of membrane fouling formation by feed water quality and membrane flux in water treatment process using ceramic membrane (세라믹 막여과 정수처리 공정에서 유입수질 및 막여과유속이 막오염 형성에 미치는 영향)

  • Kang, Joon-Seok;Park, Seo-Gyeong;Lee, Jeong-Jun;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • In this study, the effects of operating conditions on the formation of reversible and irreversible fouling were investigated in the filtration using ceramic membrane for water treatment process. The effect of coagulation pretreatment on fouling formation was also evaluated by comparing the performance of membrane filtration both with and without addition of coagulant. A resistance-in-series-model was applied for the analysis of membrane fouling. Total resistance (RT) and internal fouling resistance (Rf) increased in the membrane filtration process without coagulation as membrane flux and feed water concentrations increased. Internal fouling resistance, which was not recovered by physical cleaning, was more than 70% of the total resistance at the range of the membrane flux more than $5m^3/m^2{\cdot}day$. In the combined process with coagulation, the cake layer resistance (Rc) increased to about 30-80% of total resistance. As the cake layer formed by coagulation floc was easily removed by physical cleaning, the recovery rate by physical cleaning was 54~90%. It was confirmed from the results that the combined process was more efficient to recover the filtration performance by physical cleaning due to higher formation ratio of reversible fouling, resulted in the mitigation of the frequency of chemical cleaning.

Evaluation of Shear Elastic Modulus by Changing Injection Ratio of Grout (그라우트 주입률 변화에 따른 전단탄성계수 평가)

  • Baek, Seungcheol;Lee, Jundae;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • Among various construction methods, deep soil stabilization by chemical method have been widely used in order to improve soft ground. Dynamic variables using ground(such as sand, weathered granite soil and rock) -structure interaction design affected by dynamic load and cyclic load were studied a lot. However, there is something yet to learn about earthquake resistant design regarding reinforced ground by grout. Therefore, in this study using RC test, the correlation between shear strain and shear modulus with change of water content and injection rate in normal portland cement and clay was compared and analyzed by using Ramberg-Osgood model normalization As the result, dynamic coefficient was considerably affected by water content and grout injection rate.

Optimization Analysis of Driving Gear of Large Capacity Non-contact Mixer for MLCC Electronic Materials (MLCC 전자재료용 대용량 비접촉식 교반기 구동기어의 형상최적화 구조해석)

  • Choi, Byungju;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • MLCC is key parts of many electronic products and mixer is used to make MLCC. Currently, non-contact mixer is increasingly used due to its many merits. In case of large capacity non-contact mixer, function of driving gear is important. In this study, therefore, in order to reduce manufacturing cost through optimal design of driving gear of large capacity non-contact mixer, study on shape optimization of driving gear without excessive design modification was performed. As the results, because safety factors of modification model were decreased about 3.0 ~ 3.5 times compared with those of model with robust design, the possibility for saving manufacturing cost was confirmed.

Nonlinear Behavior Analysis of RC Shear Wall Using Truss Theory (트러스 이론을 이용한 철근 콘크리트 전단벽의 비선형 거동해석)

  • Seo, Soo-Yeon;Kim, Jeong-Sik;Choi, Yun-Chul;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • Recently, a concern to verify the displacement capacity of shear wall has been arised to produce suitable data for the performance based design. In this paper, a process is presented to evaluate the displacement capacity of shear wall. The displacement of shear wall is expressed as the superposition of shear and flexural deformation. Variable crack angle truss model with a modification and sectional analysis method are used in calculating shear and flexural displacement, respectively. In addition, the effect of axial force and the contribution of vertical and horizontal reinforcements in wall are considered in the analysis. The accuracy of proposed method is evaluated by the comparison calculation results with previous test results. From the comparison, it was shown that the hysteretic behavior of shear wall could be well predicted by using the process. In the case with flange wall, however, the method overestimates the contribution of flange wall for strength and stiffness and underestimates for displacement capacity.

Antiepileptical Properties Of Ginsenosides From Korean Red Ginseng And Ginseng Cell Culture (Dan25)

  • ChepurnovS.A.;Park, Jin-Kyu;vanLuijtelaarE.L.J.M;ChepurnovaN.E.;StrogovS.E.;MikhaylovaO.M.;ArtukhovaM.V.;BerdievR.K.;GoncharovO.B.;SergeevV.I.;TolamachevaE.A.
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.116-122
    • /
    • 2000
  • The molecular modification of antiepileptic drugs and direct synthesis of new drugs with the predetermined antiepileptic properties are perspective. New neurochemical attacking to solve the problem including prevention and inhibition of seizures seems to be related to ginsenosides and ginseng polypeptides. The main study based on the severity of febrile convulsions of rat pups has been done from the earlier investigations of antiepileptical action of ginsenosides between KGTRI and MSU (Chepurnov, Park et al., 1995) with different kinds of experimental models of epilepsy. From the cultured cell line DAN25 of ginseng root, the extracts of ginsenosides made in "BIOKHIMMASH" were studied by the project of preclinical anticonvulsant screening (Stables, Kupferberg, 1997). The inhibition of severity of convulsions, decrease of seizures threshold, decrease of audiogenic seizures in rats of different strains and normalization of cerebral blood flow (measured by hydrogen test) were demonstrated in rats after i.c.v., intraperitoneally and orally administration, respectively. The antiepileptical effects by the combination of compounds from ginseng; were compared with the iuluence of Rg1, Rb1, Rc and with the well known antiepileptical drugs such as carbamazepine, valproic acid. The base for the research is obtained by using the WAG/Rij strain (Luijtelaar, Coenen, Kuznetcova), an excellent genetic model for human generalized absence epilepsy. The improving action of gensinosides was effectively demonstrated on the model of electrical kindling of amygdala of WAG/Rij rats with genetically determined absences, and the influences of ginsenosides on the slow wave discharges have also been being investigated. The different characteristics of a kindling process exerted in the sex-different region of the amygdala and demonstrated that the level of sex steroids and content of neurosteroids in amygdaloid tissue can modify the development of seizures. The chemical structures of ginsenosides not only have some principal differences from well-known antiepileptical drugs but the Plant Pharmacology gives us unique possibility to develop new class of antiepileptic drugs and to improve its biological activity.

  • PDF

Effects of fermented black ginseng on wound healing mediated by angiogenesis through the mitogen-activated protein kinase pathway in human umbilical vein endothelial cells

  • Park, Jun Yeon;Lee, Dong-Soo;Kim, Chang-Eop;Shin, Myoung-Sook;Seo, Chang-Seob;Shin, Hyeun-Kyoo;Hwang, Gwi Seo;An, Jun Min;Kim, Su-Nam;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.524-531
    • /
    • 2018
  • Background: Fermented black ginseng (FBG) is produced through several cycles of steam treatment of raw ginseng, at which point its color turns black. During this process, the original ginsenoside components of raw ginseng (e.g., Re, Rg1, Rb1, Rc, and Rb2) are altered, and less-polar ginsenosides are generated (e.g., Rg3, Rg5, Rk1, and Rh4). The aim of this study was to determine the effect of FBG on wound healing. Methods: The effects of FBG on tube formation and on scratch wound healing were measured using human umbilical vein endothelial cells (HUVECs) and HaCaT cells, respectively. Protein phosphorylation of mitogen-activated protein kinase was evaluated via Western blotting. Finally, the wound-healing effects of FBG were assessed using an experimental cutaneous wounds model in mice. Results and Conclusion: The results showed that FBG enhanced the tube formation in HUVECs and migration in HaCaT cells. Western blot analysis revealed that FBG stimulated the phosphorylation of p38 and extracellular signal-regulated kinase in HaCaT cells. Moreover, mice treated with $25{\mu}g/mL$ of FBG exhibited faster wound closure than the control mice did in the experimental cutaneous wounds model in mice.

Analytical Study on Inelastic Behavior of RC Bridge Columns with Unbonding of Main Reinforcements at Plastic Hinge Region (소성힌지영역에서 비부착 주철근을 갖는 철근콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.29-36
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of reinforced concrete bridge columns with unbonding of main reinforcements at plastic hinge region. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The effect of unbonding of main reinforcements at plastic hinge region has been also taken into account to model the concrete and reinforcing steel. The proposed numerical method for the inelastic behavior of reinforced concrete bridge columns with unbonding of main reinforcements at plastic hinge region is verified by comparison with reliable experimental results.

Importance of a rigorous evaluation of the cracking moment in RC beams and slabs

  • Lopes, A.V.;Lopes, S.M.R.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.275-291
    • /
    • 2012
  • The service loads are often decisive in the design of concrete structures. The evaluation of the cracking moment, $M_{cr}$, is an important issue to predict the performance of the structure, such as, the deflections of the reinforced concrete beams and slabs. To neglect the steel bars of the section is a simplification that is normally used in the computation of the cracking moment. Such simplification leads to small errors in the value of this moment (typically less than 20%). However, these small errors can conduce to significant errors when the values of deflections need to be computed from $M_{cr}$. The article shows that an error of 10% on the evaluation of $M_{cr}$ can lead to errors over 100% in the deformation values. When the deformation of the structure is the decisive design parameter, the exact computing of the cracking moment is obviously very important. Such rigorous computing might lead to important savings in the cost of the structure. With this article the authors wish to draw the attention of the technical community to this fact. A simple equation to evaluate the cracking moment, $M_{cr}$, is proposed for a rectangular cross-section. This equation leads to cracking moments higher than those obtained by neglecting the reinforcement bars and is a simple rule that can be included in Eurocode 2. To verify the accuracy of the developed model, the results of the proposed equation was compared with a rigorous computational procedure. The proposed equation corresponds to a good agreement when compared with the previous approach and, therefore, this model can be used as a practical aid for calculating an accurate value of the cracking moment.

A New Steel Jacketing Method for Concrete Cylinders and Comparison of the Results with a Constitutive Model

  • Choi, Eun-Soo;Kim, Man-Cheol
    • International Journal of Railway
    • /
    • v.1 no.2
    • /
    • pp.72-81
    • /
    • 2008
  • This paper introduces a new steel jacketing method for reinforced concrete columns with lap splice and evaluates its performance by a series of axial tests of concrete cylinders. At first, 45 concrete cylinders were fabricated with varying the design compressive strengths of 21, 27 and 35 MPa and, then, the part of them was jacketed with two-split-steel jackets under lateral confining pressure. The parameters in the first test were the steel jacket's thickness and the existence of adhesive between steel and concrete surface. In the second test, whole steel jackets were used to wrap cylinders with lateral pressure. Also, a double-layer jacket consisted of two steel plates was introduced; a cylinder was jacketed by two steel plates one after another. The effect of the new method was verified through comparing the results of the compressive tests for plain and jacketed cylinders. The steel jacket built following the new method showed good results of increasing the compressive strength and ductility of the jacketed cylinders with respect to the plain cylinders. The thicker steel jackets showed the more increased compressive strength, and the ductility at failure depended on the welding quality on steel jackets. The adhesive between steel and concrete surface reduced the confining effect of the steel jackets. The whole jacket showed more ductile behavior than the two-split jackets. The double-layered jackets were estimated to possess an equal performance to that of a single steel jacket having the same thickness of the double-layered jacket. Finally, the experimental results were compared with the constitutive model of steel-jacketed concrete; which showed a good agreement between the experimental results and the models.

  • PDF

Nonlinear Analysis of RC Bridge Columns for Ductility Evaluation (철근콘크리트 교각의 연성도 평가를 위한 비선형해석)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.39-49
    • /
    • 2003
  • This research is a part of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. A nonlinear analytical method is proposed to obtain moment-curvature relationship and lateral load-displacement relationship. Various analytical models that contribute seismic behavior of reinforced concrete bridge columns are adopted and modified by comparing quasi-static test results of reinforced concrete columns with spirals of circular hoops. The analysis adopts confined concrete model, longitudinal reinforcement test result of reinforced concrete columns with spirals or circular hoops. The analysis adopts confined concrete model, etc. The results obtained using the propose analytical method agree well with test results and give conservative estimations particularly for deformation capacity and ductility.